Day 2 of the ABRESO Meeting: Fall 2022

Dipartimento Scienze del Sistema Terra e Tecnologie per l'Ambiente

ABRESO Italian activities report 2022

Land use change: abandonment of traditional agricultural practices in Italian alpine mountain

PI: Maddalena Pennisi *m.pennisi@igg.cnr.it*

ABRESO Italian Activities report 2022

Three case studies along the Alpine arc:

two National Parks (Gran Paradiso and Val Grande, Piemonte) and a silvo-pastoral system (Trentino Alto Adige)

Natural Science: ground based researches at Italian case studies

ABANDONMENT EFFECTS IN THE SELECTED CASE STUDIES ON SOIL-PLANT INTERACTIONS

<u>Noaschetta</u>
 Pasture vs tree recolonization

<u>Val Grande</u>
 Terraces/pasture *vs* tree recolonization

<u>Tesino (Telvagola and Brocon)</u>
 Pasture vs tree recolonization and viceversa

Soil-Plant interactions

- Plant biodiversity
 - Carbon (C) and nitrogen (N) concentration Leaf functional traits:
 - leaf mass per area (LMA)
 - Leaf pigments (chlorophylls, flavonols, anthocyanins)
 - C and N isotope composition ($\delta^{13}\text{C}_{\text{leaf}},\,\delta^{15}\text{N}_{\text{leaf}}$)
 - Particle size distribution and aggregate stability
- pH, electrical conductivity (EC)
- Soil organic carbon (SOC) and total soil nitrogen (N)
- C and N isotope composition of SOM (δ^{13} C; δ^{15} N)
- Enzymatic activities

Carbon fluxes

Ecosystem services

Plant Biodiversity

1) Old forest of *Picea abies*

understory vegetation (Oxalis acetosella, Petasites albus, ferns and mosses)

Plant Species

Achillea millefolium Taraxacum officinalis Deschampsia cespitosa Phleum rhaeticus Anthoxanthum odoratum Festuca rubra Avenula pubescens Poa pratensis Avenula versicolor Dactylys glomerata Crocus albiflorus Lathyrus pratensis Trifolium pratensis Trifoluum repens Vicia sepium Colchicum autunnale Veronica arvensis Rumex acetosa Ranunculus acris Trollius europeaus Alchemilla vulgaris Cruciata laevips

2) Monospecific advancing front of young *P. abies* (Transition site)

3) Pasture

Malga Telvagola

(Pieve Tesino)

TESINO

PIEMON

CHETTA

N PARADISO

TRENTING

LTO ADIGE

- Pasture showed a high species richness (more than 20 species of 10 different families)
- The transition from pasture to forest was associated with a drastic reduction of plant biodiversity

Soil Physical, Chemical and Biological Properties

Soil Physical, Chemical and Biological Properties

Soil Carbon, Nitrogen & Stable isotopes

Leaf functional traits: Nitrogen concentration (%N) and N isotope composition ($\delta^{15}N$)

ESINO

Tesino

TRENTINO

ALTO ADIGE

L GRANDE

Pasture promotes:

- wide inter-specific plasticity in N resource utilization
- diversification of ecological niches

High functional biodiversity

Leaf functional traits: N concentration, pigments and leaf mass per area

- Chlorophyll and flavonols are good indicators of N status in plants: under N deficiency, plants produce more flavonoids or carbon-based compounds
- Leaves of *P. abies* (Norway spruce) showed lower N concentration associated with:
 - lower values of chlorophyll content and nitrogen-flavonol index (NFI)
 - higher C/N ratio and leaf mass per area (LMA)
- These results suggest a different adapting ecological strategy and leaf economic spectrum:
 - Forest conservative-species (slow-growing
 - i.e., long-lived and N-poor leaves)
 - **Pasture acquisitive-species** (fast-growing i.e., short-lived and N-rich leaves)

Leaf functional traits: Carbon isotope composition (δ^{13} C)

Leaf C isotope composition (δ^{13} C) is considered a valuable proxy for time-integrated instantaneous water use-efficiency (WUE, i.e. the ratio between CO₂ uptake and trasnpiration water loss): an <u>increase of leaf δ^{13} C</u> (less negative values) indicates an <u>increase of WUE</u>

- Different relationships between δ^{13} C and N concentration per unit leaf area for **herbs**, **deciduous trees** and **evergreen-needle trees** were observed
- Plants with long-lived leaves (such as the evergreen-needle *P. abies*) invest more N in cell-walls and less in the photosynthetic apparatus respect to deciduous trees and, especially, herbaceous grassland species
- This was reflected in a change of δ¹³C and, hence, WUE among different functional groups and ecosystem types

CARBON FLUXES

Tesino (Brocon)

Eddy covariance station measuring net ecosystem CO₂ exchange (NEE)

We investigate the effect of

- Snow cover duration and length of the vegetative season;
- Pasture pressure and land usechange (from pasture to forest and vice versa);
- Climate change;

on <u>C FLUXES, PRODUCTIVITY and</u> <u>CARBON_SINK CAPACITY</u>

Natural Science:

Remote sensing researches at Italian case studies

SNOW COVER - Methodology

Gap-filling algorithm based on data fusion of Sentinel-2 + MODIS imagery with Random Forest

Data	Approach 1	Approach 2	Approach 3	RF Variables
MOD10A1 dataset	FSC	FSC	NDSI	
S2 dataset	SCE	NDSI	NDSI	
Random forest 1	Regression	Regression	Regression	Elevation Slope Aspect Day of Year Latitude Longitude Year
Random forest 2	Classification	Regression	Regression	Elevation Slope Aspect Day of Year Year Latitude Longitude Gap-filled MODIS

* remote sensing	MDPI
Comparison of three different random	n forest approaches to re-
trieve daily high-resolution snow cove	er maps from MODIS and
Sentinel-2 in a mountain area, the Gra	n Paradiso National Park
(NW Alps)	
م Chiara Richiardi*،b*, Consolata Siniscalco ^b and Maria Adamo ^a	UNDER REVIEW

SNOW COVER - Duration

Snow Cover can affect:

- grazing season (start, duration)
- phenology and quality of grazing
- water availability

	RMSE (days)	MAE (days)	MBE (days)
LSFD	17.2	7.9	2.5
FSFD	8.7	5.5	2.0
SCD	18.9	11.0	0.5

Validation VS weather stations

- FSFD First Snow-Free Day
- LSFD Last Snow-Free Day
- VSL Vegetative Season Length
- SCD Snow Cover Duration

SNOW COVER - Duration

Tesino

- Last Snow-Free Day (LSFD)
- Vegetative Season Length (VSL)
- Snow Cover Duration (SCD)

SNOW COVER and GRAZING SEASON

Each location has distinct levels of vegetation index that are not impacted by VSL

VSL impacts the average acrossseason proportion of chlorophyll over the other pigments (PropVI)

Noaschetta

SNOW COVER - Trends

Snowline Elevation

> Integration of Landsat data to extend time series from 2000 to today, at 30 m spatial resolution

1. WHY

1988

2000

2006

2018

- Observed Land cover maps and related temporal changes from the 1990s vs Webbased survey of perceived
- 2. WHAT
- > Time series of LULC maps from about 1990 on (30 years)
- Changes detection

3. HOW

- Al-based approaches
- Multi-source approach (Sentinel1, Sentinel2, Landsat + others)

4. CHALLENGES

- How to perform training/validation in the past?
- Etherogeneous landscape and complex topography

LAND COVER CHANGES

NAT. & SEMI-NAT. TERRESTRIAL VEG./Herbaceous.Gramonoids.Closed.Perennial NAT. & SEMI-NAT. TERRESTRIAL VEG./Herbaceous.Gramonoids.Sparse.Perennial NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Closed.Broadleaved.Deciduous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Closed.Needleleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Closed.Needleleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Closed.Needleleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Open.Needleleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Sparse.Broadleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Sparse.Broadleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Sparse.Needleleaved.Decidous NAT. & SEMI-NAT. TERRESTRIAL VEG./Trees.Open.Broadleaved BARE AREA/Consolidated BARE AREA/Unconsolidated

- Intra-annual Sentinel-2 Time Series
- Support Vector Machine
- Updated ground true acquired during the project

Forest↔**Pasture Transition**

Do stakeholders acknowledge the real dynamics of Forest-Pasture transition?

Very High spatial Resolution data
 Need to go far back in time

Forest↔**Pasture Transition**

- Transition from grassland to forest until the early 2000s due to land abandonment. In particular:
 - 2,6 ha of pasture-> forest transition in 1973 – 2006 over the original Malga 8,3 ha (about 31%)
- Management from the early 2000s

Malga Telvagola

International scholarship

UNIVERSITY OF SASKATCHEWAN Prof. Xulin Guo's research group, 29 June - 30 September 2022

Chiara Richiardi, PhD student

INTEGRATION of Natural & Social Sciences

Soil biochemistry **Environmental geochemistry** Sedimentology

Remote sensing

Economics of complex systems Policy evaluation Territorial analysis and planning **Plant physiology** Phenology

ONE AIM: Analysing land use change & its impacts

DIFFERENT:

- **Objects**
- **Methods**
- Spatial and temporal scales
- Meanings
- Wordings
- Values, visions

INTEGRATION of DATA SOURCES

NS

NATURAL SCIENCES

Assessing the effects of land-use changes in Alpine sites on

plant biodiversity, carbon sequestration and nutrient cycling

STAKEHOLDERS

SOCIAL SCIENCES

Mixed methods research

- Social context (economic, demographic trends)
- Review of local land use policies, land and water protection practices
- Collection historical photos of land use
- Literature review of social science contributions to CZ analysis

Qualitative Data

Semi-structured interviews to stakeholders (e.g., farmers, natural scientists, local government officials) aimed at investigating:

- Perceptions of land use change
- Drivers and evidences of land use change, services and disservices
- Management strategies and policies

Quantitative data

- Survey
- Questionnaires/interviews with stakeholders

INTEGRATION of RESEARCH QUESTIONS

NS

OBSERVED	PERCEIVED				
LAND USE CHANGE					
Remote sensing – land cover maps and related temporal changes from 1990s on <i>Ground truth</i> – plant biodiversity and bio-geochemical cycles	Web-based survey (sites' oversampling) In-depth interviews to local stakeholders Analysis of socio-economic secondary data				
SNOW COVER and GRAZING SEASON					
Remote sensing – Snow cover monitoring (extent and duration); extraction of spectral indices for vegetation and soil analysis Ground truth – variation on water discharge	 In-depth interviews to shepherds Are shepherds aware of effects on grazing season (start, duration)? phenology and quality of grazing? water availability? 				
GRAZING INTENSITY (abandonment, grazing, overgrazing)					
Remote sensing – soil organic carbon, primary productivity extraction Ground truth – carbon and nitrogen cycling, plant physiology, phenology and biodiversity	 In-depth interviews to shepherds Are shepherds aware of the effect of grazing on biodiversity? carbon and nitrogen cycles? 				
FOREST↔PASTURE TRANSITION					
Ortophotos, satellite imagery, ground truth	In-depth interviews to local stakeholders				

Analysis of territorial forest management plans