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ABSTRACT 
The aim of the present handbook is to drive the reader toward a deepen knowledge of Deep Learning 
(DL) methodologies and their functioning.  
Even if DL has ancient ancestry, only in recent years they have been strongly revalued and consequently 
applied. However, it is noteworthy that in this field, the increasing computational power played a 
fundamental role: Deep Learning models are techniques of success, but, at the same time, they are also 
expensive from a computational point of view and not always clearly understandable.  
The handbook starts considering the “big family” of Artificial Intelligence (AI), and continues clarifying 
what are Machine Learning (ML) and Deep Learning (DL). The reader will discover that DL is based on 
Artificial Neural Networks (ANN), then the fundamentals of ANNs will be presented and discussed, until 
getting to understand the working and the differences among different architectures.   
Finally, at the end of the reading, the reader will have in hands all knowledge required for recognizing 
different Deep Learning architectures, their functioning, and the fields of their applications.   
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1 Introduction 

The present handbook represents an introduction to Deep Learning (DL) and Artificial Neural 
Networks (ANNs), suitable for beginners and for whom who need to understand better how these 
models work. 

The main goal is to analyse the fundamentals of DL models, that are Artificial Neural 
Networks, and their functioning, debunking the reputation of “black-boxes”. Deep Learning 
techniques are complex, mathematically expensive, but the increase of the computational power 
of informatics allows to easily obtain results and to understand how they are achieved.  

Starting from the definition of Artificial Intelligence and Machine Learning techniques, the 
handbook focuses on Deep Learning and on its fundamental units: the Artificial Neural Networks. 

After a brief introduction on the history and a more technical section on the mathematics of 
ANNs algorithms, the handbook presents how to model a Deep Learning model and related 
problems.  

Through simple numerical examples, the handbook will help the reader in understating not 
only the working, but also the big power of DL framework. With the aim to recognize which are 
the models proposed by scientists, we discuss the basic architectures of ANN, aware of not being 
exhaustive. 

The conclusion section of the handbook argues briefly how to choose the parameters of ANNs, 
together with strengths and weaknesses.  

Finally, two Appendixes are provided: the first one presents the more used distance measures, 
while the last one is a glossary of main significant terms used in the field of Deep Learning.  

At the end of the reading, the reader will be able to understand what is a Deep Learning model 
and how it works, what is the difference between DL and other methodologies, and when applying 
a specific ANN topology.   

2 AI, ML, DL, ANNs… Who are they? Definitions… 

One of the main difficulties that people encounter studying about Artificial Intelligence is a 
certain confusion at the definition level. What is the difference among Artificial Intelligence (AI), 
Machine Learning (ML) and Deep Learning (DL)? In addition, Artificial Neural Networks 
(ANNs) are Deep Learning?  

In general, everyone has an idea of what these notions are, but whether or not they are the 
same thing is not always clear. 

The Artificial Intelligence is the “mother class” of different objects and its aim is to teach 
computers to learning how human behave. The final goal is building models able to simulate the 
cognitive capabilities of human brains. 
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Machine Learning, as suggested by Arthur Lee Samuel (1959), is a “field of study that gives 
computers the ability to learn without being explicitly programmed”. The main goal is to build 
AI programs able to automatically define other programs for interpreting data and predicting 
results.  

Figure 1 presents some examples of ML considering the three learning approaches: when there 
is a teacher controlling and correcting results (i.e., supervised learning), and when the teacher is 
absent (i.e., unsupervised learning) 1. Finally, the reinforcement learning deals with sequential 
decision problems, in which the action to be taken depends on the current state of the system and 
determines its future one. We will approach with the first two algorithms later in the text (section 
4.2).  

So, what is the Deep Learning? This is a “class” of models improving the learning process 
through Artificial Neural Networks that, thanks to powerful algorithms, are able to simulate the 
functioning and the structures of human brain.  
 

 
Figure 1. Examples of ML distinguished by learning algorithm. 

                                                      
1 For an in-depth review of ML techniques see Ray (2019). For an interesting discussion on learners’ performance see 
Cerulli (2021). 
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In sum, Artificial Intelligence learns how human brain behaves, Machine Learning exploits 
the capabilities of AI models for interpreting 
data, defining relations and applying them to 
similar patterns, and finally, Deep Learning 
and Artificial Neural Networks, thanks to 
powerful learning algorithms, allow to analyse 
big set of data without the human intervention, 
because they are able to modify themselves for 
achieving optimal results.  

Figure 2 represents the substantial difference between ML and DL: the first one needs of 
human activities in features detection, DL are completely autonomous because they adapt 
themselves learning from the reality. Indeed, Deep Leaning techniques are able to identify which 
features are really significant for the problem and which are less important.  

A typical example of ML is when we are on a social network and some pages are automatically 
proposed. A software is able to understand which are our interests, looking at our previous 
searches, and automatically it shows us similar pages. This is an algorithm of Machine Learning 
that learns our tastes. When the learning process is more complex, as for example in the case of 
Autonomous Vehicles, cars are able to recognize the presence of a pedestrian, assess a danger and 
automatically activate the braking mechanism. In addition, they can recognize road signs and help 
the driver while driving. In these cases, DL algorithms are implemented. 

 

 
Figure 2. Machine Learning and Deep Learning processes by comparison. 

 
However, as presented in table 1, the greater power of Deep Learning is counterbalanced by 

the need of large data sets and a greater computational power.  
Before concluding this section, another term used in the field of AI is Expert Systems (ES). 

An ES is a computer program reproducing the human reasoning, the logic, the belief, the opinion, 
and the experience (Plant & Stone, 1991; Fu, 1995). Following the definition of the OECD2, the 
ES is represented by two parts: the knowledge base and the inference engine and, in general, they 
are driven by IF-THEN rules. Main limitations of ES are the hypersensitivity to missing or noisy 

                                                      
2 The OECD definition of Expert System is available at this site: https://stats.oecd.org/glossary/detail.asp?ID=3384 
(last visit: January 09 2022). 

In Machine Learning (and Deep Learning), 
algorithms are defined starting from reality.  
A learning algorithm is called Learner and it 
allows to create other algorithms.  
A Learning Algorithm represents a set of 
instructions of Machine Learning allowing a 
computer program to imitate the brain 
functioning. 

https://stats.oecd.org/glossary/detail.asp?ID=3384


 
G. Falavigna 

 

10 

data and the working in sequential manner. However, the choice between the adoption of an ES 
or an ANN depends from data availability and from theoretical knowledge of problem. Indeed, 
ANNs are favourite when the theory is unclear, but the availability of data is high; whereas, if 
there is not a big amount of data, ES are always preferred.  
 

Machine Learning Deep Learning 

Pros 

Small data sets Learns features and classifies automatically 

Non-computationally intensive High accuracy  

Cons 

Feature selection with human intervention Very large data sets 

Lower accuracy then DL Computationally intensive 
Table 1. Pros and Cons of Machine Learning and Deep Learning. 

2.1 A championship of five teams for Machine Learning! 

Before explaining in details the meaning of Deep Learning and Artificial Neural Networks, it 
is worthy of note that in Machine Learning we can find different schools of thoughts.  

If you think that Machine Learning and its techniques are topics only for mathematicians or 
computer scientists or engineers, you are wrong. Indeed, it is not only a computational question: 
every method of resolution is driven by a reasoning on how a scientist approaches a problem. As 
suggested by Domingos (2015), we can identify 5 main currents of thoughts, as if they were 5 
different teams: Evolutionists, Bayesians, Analogists, Symbolists, and finally Connectionists. 
Each of these teams is distinguished from the others in three fundamental steps: Representation, 
Evaluation, and Optimization. The Representation is the formal language used for expresses his 
models; the Evaluation is the estimate of the goodness of the model; the Optimization is the 
algorithm identifying the model with highest score. 

Table 2 shows main differences among the five approaches (Domingos, 2015). For the 
Symbolists, who are inspired by philosophy, psychology and logic, learning is the inverse of 
deduction. Connectionists are inspired by neuroscience and physics to perform a reverse 
engineering operation of the brain. Evolutionists are inspired by genetics and evolutionary 
biology to carry out numerical simulations of evolution. Bayesians base their theories on statistics, 
for them learning is a form of probabilistic inference. Finally, the Analogists are influenced by 
psychology and mathematical optimization, and believe that we learn from extrapolations based 
on similarity criteria.  

Often, the players of one team teach to players of other teams with the aim to improve the 
competition and results.  

Now, conscious of “doing Machine Learning” is not only “doing mathematics”, we can start 
studying the definition of Deep Learning.  
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Teams Representation Evaluation Optimization 

Evolutionists 
Classification 

systems 
Graphical 
modeling 

Genetic research 

Bayesians 
Bayesian or 

Markov networks 
Graphical 
modeling 

Statistical 
(Bayesian) 
inference 

Analogists Support vectors Margins 
Constrained 
optimization 

Symbolists 
Logic (i.e. decision 

trees) 
Accuracy 

Inverse  
deduction 

Connectionists 
Artificial Neural 

Network 
Squared error Gradient descent 

Table 2. Five teams and their characteristics for problem solving. 

2.2 The “sound of Deep Learning”: a univocal scientific definition 

Even if in previous section we have understood what Deep Learning is about, we need to find 
a univocal scientific definition. Literature proposes several explanations and we report some of 
the most significant: 

 
1. From the web: “Deep Learning is about learning the knowledge chunk in a form of multiple 

levels of representation and abstraction to make up higher level information from lower level 
information (e.g., sound, image, etc.)”. 

2. Bengio (2009): “Deep learning is about learning feature hierarchies with features from higher 
levels of the hierarchy formed by the composition of lower level features”. 

3. LeCun et al. (2015): “Deep learning (also known as deep structured learning or hierarchical 
learning) is learning data representations, as opposed to task-specific algorithms. Learning 
can be supervised, semi-supervised or unsupervised”. 

4. Deng & Yu (2014): “Deep learning is a class of machine learning algorithms that: (1) use a 
cascade of multiple layers of nonlinear processing units for feature extraction and 
transformation. Each successive layer uses the output from the previous layer as input, (2) 
learn multiple levels of representations that correspond to different levels of abstraction; the 
levels form a hierarchy of concepts”. 

5. Zhang et al. (2018): “Deep learning is a process not only to learn the relation among two or 
more variables but also the knowledge that governs the relation as well as the knowledge that 
makes sense of the relation”. 

 
We could propose many other definitions, but it is clear that DL is to gain knowledge for a 

hierarchy of features, where features change on the base of problem analysed. Definition [5] gives 
an additional power to DL models: they are not only able to select significant features, but they 
recognize relations among variables and, more important, they extract the knowledge from these 
relations. 
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The fundamentals of Deep Learning are, as suggested in definition [4], the Artificial Neural 
Networks (ANNs), that, more than all other models, are able to reproduce the same mechanisms 
of human reasoning.  

Looking at previous definitions, we can 
reassume that Deep learning is a particular 
case of feature learning characterized by 
Artificial Neural Networks with two or more 
layers (often called multi-layers), capable of 
processing information in a non-linear way. 

Now, the definition of Deep Learning is 
clearer, and then we can pass to deepen the 
Artificial Neural Networks. 

3 Artificial Neural Networks (ANNs): A brief introduction 

The Artificial Neural Networks are a representation of human neural brain in mathematical 
terms and their main goal is to simulate its functioning process. They are composed by “artificial 
neurons” (also called “nodes”) that are the crude approximations of biological neurons found in 
human brains.  

ANNs are studied because the formalization of a single neuron is simple and simple 
architectures can be very powerful.  

A variety of problems are solved through ANNs because they outperform other computational 
methodologies. In details, ANNs are particularly effective in (Basheer & Hajmeer, 2000): 

 
1. Pattern classification: that deals with the assignment of an unknown input pattern to one of 

preassigned classes on the base of characteristics of class. This is the major ability of ANN 
and it is the so-called Classification power. In this case, the ANN topology is supervised. In 
finance, ANNs have been widely applied in the assignments of rating judgements (Falavigna, 
2008a; Falavigna 2008b; Falavigna, 2012). A comprehensive review of applications can be 
found in the paper of Abiodun et al. (2019). 

2. Clustering: data are grouped on the base of similarity and dissimilarity among input patterns. 
This specific process, is often used as pre-processing phase with the aim to reduce the noise 
in the input data. The ANN architecture is, in this case, unsupervised. For a comprehensive 
survey of applications see Liao & Wen (2007). 

3. Function approximation: input-output data are trained with the aim to approximate the hidden 
rules linking input to output. In general, Multi-layer ANNs are universal approximators 
(Hecht-Nielsen, 1990; Hornik et al., 1989). A short but effective review of ANNs topologies 
for function approximation can be found in Zainuddin & Pauline (2008).  

4. Forecasting: the ANN is applied to time-series in order to predict subsequent behaviour 
considering a given scenario. Starting from a well-known dataset, the neural network is able 
to produce outputs expected from a given input. A special case of this is time series prediction 
with dynamic/recurrent networks (i.e., Long- and Short- Term Memory networks, LSTM). A 

Deep Learning (DL): is a particular case of 
feature learning characterized by Artificial 
Neural Networks with two or more layers 
(often called multilayers or hidden layers) 
capable of processing information in a non-
linear way. 
When an ANN is composed by only one or 
two hidden layers can be called Shallow 
Neural Network.  
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systematic review of application in prediction and forecasting is proposed by Neu et al. 
(2021). 

5. Optimization: ANN is also able to maximize or minimize an objective function, given a set 
of constraints. Hopfield networks are commonly used with this aim. ANNs are often coupled 
with Genetic Algorithm with the aim to improve their performance. See for an interesting 
application in environmental field the work of Li et al. (2021). 

6. Association: the ANN works as a pattern associator trained on perfect input data. In a second 
phase, the ANN is applied for classifying corrupted data. In this case, Hopfield networks are 
applied in the field of image recognition. A review on the application of Hopfield NN and 
Boltzman machine in imaging recognition is proposed by Marullo & Agliari (2021). 

7. Control: recurrent ANNs are often used for aiding an adaptive control system. A review of 
applications in chemical control process can be found in Hussain (1999). 

8. Text mining: deep learning models are used for the automatic processing of natural textual 
language available in large quantities on electronic files. DL allows to extract and structure 
the contents and themes for a quick analysis (of a non-literary type), the discovery of hidden 
information and/or to automate some decisions. Interesting commentaries on text mining in 
medical field are provided in Falavigna (2020) and Falavigna (2021).  

 
A really interesting application of ANN is the brain modelling where the goal is to understand 

how real brain works. This can improve the knowledge about human intelligence and help in 
defining strategies or remedial actions for patients with damaged brains. Not only, the main idea 
is to exploit advantages of ANNs for building artificial systems with the aim to build effective 
devices, to improve machine power, to automatize processes, and to analyse relations among data.  

 
Finally, we can reassume the main applications until today of ANNs in the following (non-

exhaustive) two research streams3: 
 

• Brain modelling: 
• Models of human development for helping children with developmental problems.  
• Simulations of adult performance with the aim at understanding of how the brain works.  
• Neuropsychological models for suggesting remedial actions for brain damaged patients.  
• Artificial Life simulations for clarifying brain evolution, structure, growth, etc. 

• Real world applications: 
• Pattern recognition (for instance, speech recognition).  
• Data analysis (for instance, data mining). 
• Noise reduction (for instance, ECG noise reduction).  
• Control systems (for instance, autonomous adaptable machines).  
• Computer games (for instance, intelligent agents).  
• Financial modelling (for instance, predicting stocks or shares value).  
• Other time series prediction (for instance, weather forecasting). 

 

                                                      
3 For a deeper analysis of applications of ANNs, see Abioudun et al. (2018). 



 
G. Falavigna 

 

14 

It is then clear that ANNs have many advantages, otherwise the great success found in 
scientific applications would not be explained and in the following paragraphs, after presenting 
a short history of ANNs, we will explain their architecture, their working, their strengths, and 
their weaknesses.  

3.1 A short history of Artificial Neural Networks  

With the aim to describe the working of biological neurons, Warren McCulloch and Walter 
Pitts modelled the first Artificial Neural Network on electrical circuits. This happened in 1943, 
while a few years later, in 1949, Hebb contributed to the knowledge about the networks’ 
functioning, demonstrating that the performance of the networks improved with each use. This 
was the first evidence that artificial neurons are able to learn as biological ones.  

However, in those years, the computational power of computer was limited, but in the 
1950s, in the IBM laboratories it was anyway possible to run a simple artificial neural network. 
Unfortunately, the experiment failed.  

In the late 1950s, the so called “ADALINE” and “MADALINE” models were defined by 
Widrow and Hoff (1959, Stanford). The ADAptive LINear Elements (i.e., ADALINE) was 
used for recognizing dichotomous patterns of streaming bits of a phone line with the aim to 
predict the next bit. The Many ADALINE (i.e., MADALINE) was the first multi-layer 
Artificial Neural Network, built for eliminating the echoes on phone lines. This study would 
never have been born if in 1958 Rosenblatt had not created, from the observation of eye 
movement of a fly, the first neuron that was called Perceptron. 

Researchers studied very seriously the mathematical formalization of learning capability 
of Perceptron, for example Widrow and Hoff defined different learning rules, but in 1969 
Minsky and Papert published a book on weaknesses of Perceptron starting a dark period for 
the development of Artificial Neural Networks.   

One of the main motivations of the failure of ANNs was surely the great expectations on 
these models that, on paper, were very powerful, but, in reality, they were really 
computationally intensive. In those same years, ethical discussions on the possibilities of 
“thinking machines” arose. This debate was really determinant in the failure of ANNs, just 
think that it is open until now.  

Fortunately, the promising results obtained with simple neural networks and the growing 
computational capacity of computers played in favour to a reprise of ANNs, and between 1972 
and 1975, Kohonen and Anderson proposed a prototype of the well-known Self-Organizing 
Map (SOM), representing the unsupervised networks more applied.  

Starting from these years, the interest in ANNs was renewed and Hopfield defined a new 
idea of connections between neurons. Indeed, until now synapses travelled only from left to 
right (i.e., feed-forward); now Hopfield networks provide also for “travels” in the opposite 
direction (i.e., back-ward). At the same time, researchers studied more complex topologies of 
ANNs, where each layer solves different type of problem.  

During the 1980s, studies focused on the mathematical formalization of learning algorithms 
and their optimization. The so-called “back-propagation” algorithm is the result of these 
researches, but the performances are not yet convincing in terms of learning rate.  
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Contemporaneously to computational improvements in computer hardware and software, 
also complexity of ANNs increased. In 1990s years, recurrent networks, Long- and Short- 
Term Memory networks (LSTM), and Convolutional networks have been proposed whereas 
applications of complex ANNs were even more widespread.  

In more recent years, new terminology has been adopted for ANN models with more layers 
with the aim to underline the ability of these models to “go on the deep” of data and extract 
knowledge from them. Hence, from now, multi-layer networks are also called Deep Learning 
models.  

Sum up, as shown in figure 3, even if ANNs were born more than half century ago, they 
were not immediately appreciated, but now the Deep Learning methodologies are very 
powerful and its applications are considered in many fields. 

From the history of ANNs and DL, literature converges in suggesting some main 
advantages for applying ANNs and for continuing to study in this field.  

First of all, artificial neurons are very simple, moreover if compared to the big power of 
ANNs. Indeed, they are good learners and they are able to generalize behaviour minimizing 
errors. In general, unlike the standard models, they do not require any restrictions on data to 
analyse, and they are noise tolerant. Finally, thanks to the growing computational power, many 
types of networks are proposed and each of them is very flexible. The biggest weakness is that 
more complex is the framework, and more difficult is to have under control what happens in 
the deep layers. In the last paragraph of this handbook, strengths and weaknesses of ANNs 
will be deeply discussed. 
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Figure 3. Flow diagram of ANNs short-history.

1943

•McCulloch
and Pitts 
present the
first model of 
a simple NN 
with electrical
circuits.

1949

•Hebb: neural 
pathways are 
strengthened 
each time 
they are used. 
As for human 
brain: if two 
nerves fire at 
the same time 
the 
connection 
between 
them is 
enhanced.

1950s

•From IBM 
laboratories
bad results 
are obtained 
after a 
simulation 
with ANN.
•Using a 

telegraph 
realys on 
vacuum tubes, 
Von Neumann 
imitated a 
simple neuron
functions
(1957).

1958

•Rosenblatt: 
definition of 
the 
Perceptron
from the 
observation of 
eye
movement of 
a fly.

1959

•Widrow and 
Hoff
developped
the Multiple 
ADAptive
LINear
Elements
(MADALINE) 
that was the 
first neural 
network to be 
applied to a 
real-world 
problem.

1969

• Minsky and 
Papert proved 
the limiations 
of Perceptron 
in their 
book,
Perceptrons.

1972

•Kohonen and 
Anderson 
developed a 
similar 
network 
independently 
of one 
another. They 
realize models 
similar to 
MADALINE.

1975

•Fukushima 
presents the 
first 
unsupervised
multilayered
network.

1982

•Using 
bidirectional 
lines, Hopfield
proposed
useful model.
•Reilly and 

Cooper used a 
hybrid 
network with 
multiple 
layers, where 
each layer 
was used for 
solving 
different 
problem.

1986

•An algorithm 
similar to the 
now called 
back-
propagation 
was born 
(Rumelhart).
•However, 

back-
propagation 
networks are 
"slow 
learners", 
needing 
possibly 
thousands of 
iterations to 
learn.

1997-
1998

•New frameworks  
have been
proposed.
•Hochreiter and 

Schmidhuber
proposed ANNs
with feedback 
connections (i.e. 
recurrent ANNs
and Long short-
term
memory, LSTM).
•Convolutional 

neural network 
(a multi-layer 
network based 
on the visual 
cortex) have 
been proposed 
by LeCun, 
Bottou, Bengio, 
and Haffner.

2000s 
NOW

•The increase
of 
computational
power 
allowed to 
build even
more complex 
ANN 
frameworks 
that, now are 
called «deep 
learning».
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3.2 From biology to mathematics 

In previous section, we presented an Artificial Neural Network as the informatics 
representation of human neurons. Now, we 
start from the biology in order to understand 
as translating in mathematical formalization 
the working of a neuron. 

To doing this, it is necessary to present the biological neuron and its main characteristics. 
Figure 4 shows a picture of a biological neuron and its drawing with labels of its different parts. 
In details:  
• A neuron is an electrically excitable cell communicating with other cells via specialized 

connections called synapses. It is the main component of nervous tissue in all animals. Plants 
and fungi do not have nerve cells. Within the soma, there is the nucleus that contains the 
genetic material in the form of chromosomes  

• A typical neuron consists of a cell body (soma), dendrites, and a single axon. The axon and 
dendrites are filaments that extrude from the soma. Dendrites typically branch profusely and 
extend a few hundred micrometers from the soma. 

• At the farthest tip of the axon's branches are axon terminals, where the neuron can transmit a 
signal across the synapse to another cell. 

 
 
 
 
 
 
 
 
 
 

Figure 4. Biological Neuron (Adapted from Wikimedia Commons). 

 
Even if it may seem very hard to traduce the neuron in mathematical terms, figure 5 shows all 

fundamental elements, that basically are only three:  
 

1. A set of synapses or connecting links. Unlike a synapse in the brain, the synaptic weight of 
an artificial neuron may lie in a range that includes negative as well as positive values. 

2. An adder for summing the input signals, weighted by the respective synapses of the neuron; 
the operations described here constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. 
 
An Artificial Neural Network is composed by artificial neurons linked together by weights and 

organized in layers.  
The layer represents a collection of neurons, but in simple frameworks, it can also consist of 

just one neuron (or node). Hidden layers are layers between inputs and output layer, where ANN’s 

Artificial Neural Networks (ANNs): are a 
representation of human neural brain in 
mathematical terms. 
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weights are calculated and stored. Note that the counting index of layers starts with the first hidden 
layer up to the output layer. However, in general, the set of inputs is also indicated as a layer (i.e., 
input layer), but this is not counted in the number of layers of the network. 

The neuron is then the main element of an ANN and only understanding its working it is 
possible to investigate how results of Deep Learning models are obtained.  

The first basic model was proposed by McCulloch and Pitts in the mid-1950s (the so-called 
“Threshold Logic Unit”, TLU), and a more sophisticated version has been studied by Rosenblatt 
in 1957 that defined a single layer made by more TLUs (the so-called “Perceptron”). 
Nevertheless, in general, the Perceptron refers to a single TLU.  

Figure 5. From biological to artificial neuron (Adapted from Wikimedia Commons). 

Let us consider figure 6. We can define the k-th neuron, 𝑢𝑢𝑘𝑘, as: 

𝑢𝑢𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

and its output, 𝑦𝑦𝑘𝑘, as: 
𝑦𝑦𝑘𝑘 = 𝜑𝜑(𝑢𝑢𝑘𝑘 + 𝑏𝑏𝑘𝑘) 

From this simple formulation, it is clear that the result (yk) depends from weights. Indeed, in 
ANN models, synaptic weights are the real unknown. They determine the connections, that 
represent the collection of knowledge extracted by the network. 

In addition, the neuronal model also includes an external bias, denoted with bk. The bias can 
be positive or negative and it affects the activation of neuron (neuron fires). This parameter 
improves the flexibility and the fitting of the neural network. 

In general, the bias is considered as an input (x0) equal to +1, then the k-th neuron is represented 
as follows: 

𝑢𝑢𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

and its output 
𝑦𝑦𝑘𝑘 = 𝜑𝜑(𝑢𝑢𝑘𝑘) 

[1] 

[2] 
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The weight of the bias assumes a role very important because it allows the “activation state” 
of the neuron. If the neuron does not activate, its weights 
decrease affecting seriously the feature detection process.  

Last but not least, result depends also from the activation 
or transfer function 𝜑𝜑(𝑢𝑢𝑘𝑘). Literature suggests several 
functional forms that we will discuss later.  

 

  
Figure 6. The Perceptron. 

 
In order to understand the role of bias, let us consider figure 7. In figures (a) and (b) is drawn 

a simple neuron with 2 inputs and 1 output. The transfer function is the Rectified Linear Unit 
(ReLU): it returns 0 if the argument is negative, otherwise it returns the maximum value of the 
function. 

Let us consider figure 7 (a) and set b = +1: 
 

𝑢𝑢𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗 =
𝑚𝑚

𝑗𝑗=1

 

= 0*1 + 1*0.35 + 2*(-2) = -3.65 
the output will be: 

𝑦𝑦 = 𝜑𝜑(𝑢𝑢𝑘𝑘) = max{0;−3.65} = 0 
 
Results are 0 and -3.65, but the ReLU function returns 0 when results are negative, then y is 

equal to 0. 
Looking at figure (b) and b = +1, previous equations change as follows: 
 

𝑢𝑢𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗 =
𝑚𝑚

𝑗𝑗=1

 

= 4*1 + 1*0.35 + 2*(-2) = 0.35 
and 

𝑦𝑦 = 𝜑𝜑(𝑢𝑢𝑘𝑘) = max{0; +0.35} = 0.35 
 
In this case result is 0.35. 

The activation or transfer 
function defines the output 
of a neuron given an input or 
a set of inputs. 
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(a)                                                                 (b) 

Figure 7. The role of bias weights. 

 
Each neuron becomes active if the amount of signal it receives exceeds an activation threshold, 

then in the first case (a), the neuron is not activated (signal=0), on the contrary, in the second case 
(b), the signal is positive and the neuron is activated.  

 
In this section we have understood as a biological neuron can be translated in mathematics, 

and, in addition, we have run a simple example showing what means when neuron is activated. 
Now, we are ready for building our first Perceptron exploiting the logic gate operators and 

displaying that the non-linearity of network allows to solve easily simple problems. However, 
before continuing it is necessary to precisely define the 
data and their labels adopted from now on: 
• Input data: are data entering into the model. They 

are organized in a matrix where, in general, rows 
are observations and columns variables (xi). 

• Target data: are the known results for each subject 
presented into the network. 

• Output data: are the results of the network for each subject presented into the model. 
 

For instance, suppose we want to classify some cakes into two classes (i.e., saleable and not-
saleable). We know a set of variables characterizing the quality of 10 cakes: height, diameter, 
weight, and pastry color (five classes of colors). The input layer is represented by a 10x4 matrix 
where, in general, rows are cakes and columns are their characteristics (Figure 8 (a)). The target 
is represented by a column vector of 10 elements equal to 0 if the corresponding cake is not-
saleable and 1 otherwise (Figure 8 (b)). The output is a column vector with 10 responses of the 
ANN (one for each cake) to the question “considering these 4 variables, is this cake saleable?” 
(Figure 8 (c)). Clearly, we hope that the neuron is able to learn well from input and target in order 
to recognize if cake is good or not, because, in this manner, we can delegate to him the “quality 
control” before the sale.  

 

The Perceptron is a single-layer 
neural network, so that the 
simplest architecture of Artificial 
Neural Network. 



 
Deep Learning for Beginners 

 

 21 

 
(a)                                                      (b)                                                   (c) 

Figure 8. Dataset for ANNs. 

3.3 Logic Gate Operators: linear and non-linear separability 

In this section we approach with three logic gate operators with the aim to show the power of 
neuron/network in solving non-linear separable 
problems. 

Let us consider True equal to 1 and False equal to 0, 
we study the following three logic gate operators: 

 
1. AND: True if both inputs are true, False otherwise. 
2. OR: True if at least one operand is true, False if both 

are false. 
3. XOR: True if both operands are different. False if both are true or false.  

 
Let us start with the AND operator. Inputs (x1 and x2) and targets (y) are the following:  
 

x1 x2 y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
Figure 9 (a) represents inputs, bias, weights and targets. The input matrix has 4 rows (i.e., the 

number of elements for each variable), and 3 columns (i.e., the bias, x1, and x2). The bias is 
always +1, weights are collected in a vector of three rows, one for each presented variable. We 
know the target with the correct response of the neuron for each pair of elements (i.e., target 
vector). Figure 9 (b) shows the drawing of the problem: find the boundary allowing to classify 
correctly the items. The green straight line divides the plane into two subsections separating the 
two classes (in light-blue the False targets; in purple the True target).  

Logic gate operator: is a model or 
a device implementing a Boolean 
function. Starting from binary 
inputs, the model produces a 
binary output. 
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The neuron starts assigning to w1 and w2 a value (i.e., +1), then it finds the w0. The assignment 
of initial values to weights can be set to a fixed value or random. Later in the text, we will see 
how from the initial values, the neuron/network is able to find the weights minimizing the errors 
in classification or prediction (i.e., back-propagation algorithm).  

 

     
(a)                                                               (b) 

Figure 9. The AND problem. 

Since the problem is to classify the input into two classes, we adopt as transfer function the 
step or hard-limit function: 

 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑘𝑘) = �
1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
0 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 < 0  

 
Starting from input and target matrixes, considering equations [1] and [2], and the transfer 

function, we can define the following system:  
 
 
 
 
 
Let us consider the first equation of the system: 

𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 
the corresponding target is 0, then, considering the hard-limit function, the [4] must be lower 

than 0. 
The same consideration can be done for the second and the third equations. 
Looking at the fourth expression:  

𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1 
in this case the corresponding target is 1, then, following the hard-limit function, the [5] must 

be higher than 0.  
The system [3] is now as follows:  

 
 
 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1

 

[4] 

[5] 

[3] 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 < 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1 < 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0 < 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1 ≥ 0
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If w1 and w2 are equal to +1, the system is reduced as follows: 
 
 
 
 
and the optimal value for w0 ranges between -2 and -1, as shown in figure 10. 
 

 
Figure 10. Solution for AND logic gate operator. 

 
Setting w0 = -1.5, we can find the evidence that the value fit well substituting -1.5 in [6]. 
 
 
 

 
This example shows that the defined Perceptron is able to find the optimal boundary separating 

the plane. Starting from inputs and targets, and assigning randomly values to weights (w1 and 
w2), we were able to find the weight w0 for the AND logic gate problem.  

 
What happens for the OR logic gate? 
Let us consider the following inputs (x1 and x2) and targets (y) representing the OR operator: 
 

x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
Figure 11 (a) presents the neuron for solving the OR operator problem. The first column of the 

input matrix shows all unitary values, because it represents the bias. The vector of weights 
considers weights for input 1 and input 2, whereas the target vector identifies the correct response 
according to the OR rule.  

As in the case of AND logic gate, figure 11 (b) shows that the solution is to find values of 
weights that, given those targets, are able to draw the boundary separating the plane into two 
sections (in red the False target; in purple the True targets).  

The procedure for finding the optimal result is the same seen before, as well as the hard-limit 
function as activation rule. 

�
𝑤𝑤0 < 0

𝑤𝑤0 + 1 < 0
𝑤𝑤0 + 1 < 0
𝑤𝑤0 + 2 ≥ 0

 �
𝑤𝑤0 < 0
𝑤𝑤0 < −1
𝑤𝑤0 < −1
𝑤𝑤0 ≥ −2

 [6] 

�
−1.5 < 0
−1.5 < −1
−1.5 < −1
−1.5 ≥ −2

 

OR: True if at least one 
operand is true, False if 
both are false. 
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(a)                                                        (b) 
Figure 11. The OR problem. 

 
Starting from input and target matrixes, considering equations [1] and [2], and the hard-limit 

transfer function, we can define the following system: 
 
 
 
 
 
Let us consider the first equation of the system: 

𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 
the corresponding target is 0, then, considering the hard-limit function, the [8] must be lower 

than 0. 
 
Unlike what happened to the AND operator, the second, the third, and the fourth elements 

present a target equal to 1, then the corresponding equations have to be higher than 0. 
The system [7] is now as follows:  
 
 
 
 
If w1 and w2 are equal to +1, the system is reduced as follows: 
 
 
 
 
and the optimal value for w0 ranges between -1 and 0, as shown in figure 12. 
Setting w0 = -0.5, we can find the evidence that the value fit well substituting -0.5 in [9]. 
 
 
 
 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1

 

[8] 

[7] 

�

𝑤𝑤0 ∙ 1 + 𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 < 0
𝑤𝑤0 ∙ 1 + 𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1 ≥ 0
𝑤𝑤0 ∙ 1 + 𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0 ≥ 0
𝑤𝑤0 ∙ 1 + 𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1 ≥ 0

 

�

𝑤𝑤0 < 0
𝑤𝑤0 + 1 ≥ 0
𝑤𝑤0 + 1 ≥ 0
𝑤𝑤0 + 2 ≥ 0

 �

𝑤𝑤0 < 0
𝑤𝑤0 ≥ −1
𝑤𝑤0 ≥ −1
𝑤𝑤0 ≥ −2

 [9] 

�

−0.5 < 0
−0.5 ≥ −1
−0.5 ≥ −1
−0.5 ≥ −2
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Figure 12. Solution for OR logic gate operator. 

 
As in the case of AND operator, we find the weight for the bias (w0) able to identify a boundary 

for separating the plane and finding the correct solution for the OR problem. 
Finally, figure 13 reassumes the neurons built for AND and OR operators with the solution in 

the Cartesian plane. 
 

 
Figure 13. Perceptrons for AND and OR logic gate operators. 

 
What about the XOR logic gate operator? 
In the case of XOR, the inputs (x1 and x2) and the targets are the following: 
 

x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
Figure 14 (a) presents the neuron built for solving the problem. Input, weight and target 

matrixes have the same size od previous cases, and the first column of input matrix represents the 
bias.  

Figure 14 (b) shows the XOR operator in the cartesian plane. In this specific case, we find that 
it is necessary to define two straight lines, two boundaries, for solving the problem (in orange the 
False targets; in purple the True targets).  
However, let us start, as in previous cases, applying the hard-limit function to our neuron.  

XOR: True if both 
operands are different. 
False if both are true or 
false. 
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(a)                                            (b) 

Figure 14. The XOR problem. 

 
Starting from input and target matrixes, considering equations [1] and [2], and the hard-limit 

transfer function, we can define the following system: 
 
 
 
 
 
Let us consider the first equation of the system: 

𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 
the corresponding target is 0, then, considering the hard-limit function, the [11] must be lower 

than 0. The same result is found for the last equation of [10], whereas the second and the third 
equation have to be higher than 0 because the corresponding target is 1. The final system is now:  

 
 
 
 
If w1 and w2 are equal to +1, the system is reduced as follows: 
 
 
 
 
It is clear that in this manner it is impossible to find the correct solution. We can see the 

evidence in figure 15, where is reported the solution of the system for w0.  
 

 
Figure 15. Solution for XOR problem with a single neuron. 

 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1

 
[10] 

[11] 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 < 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1 ≥ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0 ≥ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1 < 0

 

�
𝑤𝑤0 < 0

𝑤𝑤0 + 1 ≥ 0
𝑤𝑤0 + 1 ≥ 0
𝑤𝑤0 + 2 < 0

 �
𝑤𝑤0 < 0
𝑤𝑤0 ≥ −1
𝑤𝑤0 ≥ −1
𝑤𝑤0 < −2
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Obviously the neuron used until now does not work, but the solution is very simple. Seeing 
figure 14 (b) the solution is clear, we have to use two neurons, one for each boundary.  

For solving the XOR problem, we need another operator, the NAND logic gate (Not-AND). 
This operator is an inverted AND gate, as shown in figure 16 (in light-blues the False targets; in 
purple the True target). 

 
Figure 16. AND and NAND operators. 

Let us consider the following inputs (x1 and x2) and target (y) for NAND operator: 
x1 x2 y 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 
Remember that inputs and target for the AND operator are exactly the opposite:  

x1 x2 y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
Figure 17 (a) presents the neuron with inputs, target, weight matrixes where the first column 

of the input matrix is represented by the bias. Figure 17 (b) presents newly the visualization of 
the problem (in light-blues the False target; in purple the True targets).  

 

 
(a)                                            (b) 

Figure 17. The NAND problem. 

NAND: False if both 
operands are true. 
True otherwise. 

AND: True if both 
inputs are true, False 
otherwise. 
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Starting from input and target matrixes, considering equations [1] and [2], and the hard-limit 
transfer function, we can define the following system: 

 
 
 
 
 
Let us consider the first equation of the system: 

𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 
the corresponding target is 1, then, considering the hard-limit function, the [13] must be higher 

than 0, and the same reasoning can be done for the second and the third equation. Only last 
equation should be lower than 0. The system is then the following: 

 
 
 
 
If w1 and w2 are equal to -1 (NAND is the opposite of AND, then we can set the weights with 

the same value, but with the opposite sign), the system can be reduced as follows: 
 
 
 
 
 
and the optimal value for w0 ranges between +1 and +2, as shown in figure 18. 
Setting w0 = +1.5, we can find the evidence that the value fit well substituting +1.5 in [14]. 
 
 
 
 
 

 
Figure 18. Solution for NAND problem. 

 
Now, we are ready for solving the XOR operator. In details, we need to build an Artificial 

Neural Network with two layers and three neurons (two in the 
hidden layer and one in the output layer): 
1. Neuron 1: NAND operator (hidden layer). 
2. Neuron 2: OR logic gate (hidden layer). 
3. Neuron 3: AND operator (output layer).  

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1

 [12] 

[13] 

�
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 0 ≥ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 0 + 𝑤𝑤2 ∙ 1 ≥ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 0 ≥ 0
𝑤𝑤0 ∙ 1 +𝑤𝑤1 ∙ 1 + 𝑤𝑤2 ∙ 1 < 0

 

�
𝑤𝑤0 ≥ 0

𝑤𝑤0− 1 ≥ 0
𝑤𝑤0− 1 ≥ 0
𝑤𝑤0− 2 < 0

 �
𝑤𝑤0 ≥ 0
𝑤𝑤0 ≥ 1
𝑤𝑤0 ≥ 1
𝑤𝑤0 < 2

 [14] 

�
+1.5 ≥ 0
+1.5 ≥ 1
+1.5 ≥ 1
+1.5 < 2

 

XOR: True if both 
operands are different. 
False if both are true or 
false. 
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Figure 19 shows the visualization and the structure of the network. The network presents a 
bias for each layer, always equal to +1, but with unknown weights. The inputs x1 and x2 are both 
linked to the two neurons (i.e., NAND and OR) and these are linked together through an AND 
function (in purple the True targets, the False targets are respectively in light-blue, in red, and in 
orange).  

 

 
Figure 19. The XOR framework. 

 
Even if figure 19 can seem complex, in reality, we already know the majority of parameters. 

We can start from the first layer, solving the NAND and the OR neurons (figure 20).  
 

 
Figure 20. Parameters of the first layer. 

Inputs and targets for XOR problem are: 
x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

and the activation function is always the hard-limit function.  
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Let us look at the NAND neuron. Weights for bias, x1, and x2 are respectively +1.5, -1, and -
1, as found before. Substituting these parameters values in [12], we obtain the following system: 
 

 
 
 
 
Solving and applying the hard-limit function, we find another vector:  
 
 
 
 
 
 
Looking at the first equation of the model, the result is +1.5, applying the hard-limit function 

the corresponding value is 1, because 1.5 is higher than 0. The same reasoning can be done also 
for the second and the third equation, whereas the result of the fourth is negative and then the 
corresponding value is 0. 

Let us consider now the OR neuron. Weights for bias, x1, and x2 are respectively -0.5, +1, and 
+1, as found before. Substituting these parameters values in [7] we obtain the following system: 

 
 
 
 
 
Solving and applying the hard-limit function, we find another vector: 
 
 
 
 
 
Result from the first equation is lower than 0, then, applying the activation function, the 

assigned value is 0. In the other three cases, results are always higher than 0, and the result from 
transfer function is 1.  

Now, we are ready for solving the output layer. At this point we have 2 input vectors, one from 
each neuron: x3 from the NAND operator and x4 from the OR one:  

x3 x4 
1 0 
1 1 
1 1 
0 1 

 
We know that the last neuron is an AND operator and we want to find the weight of the bias 

allowing to obtain results of XOR (figure 21). Applying the AND to x3 and x4, the y is:  

�
1.5 ∙ 1 − 1 ∙ 0 − 1 ∙ 0
1.5 ∙ 1 − 1 ∙ 0 − 1 ∙ 1
1.5 ∙ 1 − 1 ∙ 1 − 1 ∙ 0
1.5 ∙ 1 − 1 ∙ 1 − 1 ∙ 1

 

�
1.5 ∙ 1 − 1 ∙ 0 − 1 ∙ 0 = 1.5
1.5 ∙ 1 − 1 ∙ 0 − 1 ∙ 1 = 0.5
1.5 ∙ 1 − 1 ∙ 1 − 1 ∙ 0 = 0.5

1.5 ∙ 1 − 1 ∙ 1 − 1 ∙ 1 = −0.5

           �
≥ 0 −→ 1
≥ 0 −→ 1
≥ 0 −→ 1
< 0 −→ 0

 

�
−0.5 ∙ 1 + 1 ∙ 0 + 1 ∙ 0
−0.5 ∙ 1 + 1 ∙ 0 + 1 ∙ 1
−0.5 ∙ 1 + 1 ∙ 1 + 1 ∙ 0
−0.5 ∙ 1 + 1 ∙ 1 + 1 ∙ 1

  

�
−0.5 ∙ 1 + 1 ∙ 0 + 1 ∙ 0 = −0.5
−0.5 ∙ 1 + 1 ∙ 0 + 1 ∙ 1 = 0.5
−0.5 ∙ 1 + 1 ∙ 1 + 1 ∙ 0 = 0.5
−0.5 ∙ 1 + 1 ∙ 1 + 1 ∙ 1 = 1.5

           �

< 0 −→ 0
≥ 0 −→ 1
≥ 0 −→ 1
≥ 0 −→ 1

 

Hard-limit function 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑘𝑘) = �
1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
0 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 < 0 
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Notice that y is exactly the result of XOR.  

 
Figure 21. Parameters of the output layer. 

 
However, we want to find the weight of bias (w03). Looking at [1] and [2], an input bias with 

unitary values, weights for x3 and x4 equal to +1, we can define the following system where w03 
is the weight of bias and it is the unknown: 

 
 
 
 
Looking at the first and the fourth equation and applying the hard-limit function, they can be 

set lower than 0. In the other cases (i.e., second and third equations), results have to be higher 
than 0. The system is the following:  

 
 
 
 
The solution for w03 is then: 
 
 
 
 
 
and w03 ranges between -2 and -1 (for instance, w03=-1.5), as shown in figure 22. 
 

�
𝑤𝑤03 ∙ 1 + 1 ∙ 0 + 1 ∙ 0
𝑤𝑤03 ∙ 1 + 1 ∙ 1 + 1 ∙ 1
𝑤𝑤03 ∙ 1 + 1 ∙ 1 + 1 ∙ 1
𝑤𝑤03 ∙ 1 + 1 ∙ 0 + 1 ∙ 1

   

�
𝑤𝑤03 ∙ 1 + 1 ∙ 0 + 1 ∙ 0 < 0
𝑤𝑤03 ∙ 1 + 1 ∙ 1 + 1 ∙ 1 ≥ 0
𝑤𝑤03 ∙ 1 + 1 ∙ 1 + 1 ∙ 1 ≥ 0
𝑤𝑤03 ∙ 1 + 1 ∙ 0 + 1 ∙ 1 < 0

       

�
𝑤𝑤03 < 0

𝑤𝑤03 + 2 ≥ 0
𝑤𝑤03 + 2 ≥ 0
𝑤𝑤03 + 1 < 0

 �
𝑤𝑤03 < 0
𝑤𝑤03 ≥ −2
𝑤𝑤03 ≥ −2
𝑤𝑤03 < −1

 

⎣
⎢
⎢
⎢
⎡
𝒚𝒚
0
1
1
0⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎡
𝒙𝒙𝒙𝒙
0
1
1
1 ⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎡
𝒙𝒙𝒙𝒙
1
1
1
0 ⎦
⎥
⎥
⎥
⎤
 AND 
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Figure 22. Solution of XOR problem with ANN. 

 
Which is the lesson learnt? 
In general, with two inputs, weights define a one-dimensional decision boundary that is a 

straight line in the bidimensional input space. With n inputs, weights define a decision boundary 
that is an n–1 dimensional hyperplane in the n dimensional input space. 

If input patterns can be classified using a single hyperplane, the problem is linearly separable 
(i.e., AND, OR or NAND). Otherwise, such as for XOR problem, the problem is not linearly 
separable and it is necessary to define more complex architectures and a single TLU is not enough. 

 
Finally, presented exercises on logic gates allow us to understand how building a neuron and 

our first two-layer Artificial Neural Network (or Shallow Neural Network). Figure 23 shows the 
final result for XOR operator and the correct terminology in Deep Learning methodologies. The 
input layer contains the so-called “neurons” (even called “nodes”) with the initial sample, the 
hidden layer is the “dark side” of network, that is the layer where neurons do magic and present 
signals to the target (or output) layer. There is not a rule for establishing the correct number of 
neurons in the hidden layer and, in addition, the “dark side” can be formed by more than one 
hidden layer (as a class of magicians!). When ANNs present only one or two hidden layers, they 
are also called “Shallow Neural Networks”. If the architecture of network is more complex and 
the “dark side” is considerable (more hidden layers with many neurons), the ANN is called Deep 
Learning. Another characteristic of the ANN in figure 23 is that links among layers travel from 
left to right, and they do not come back, then we have built a feed-forward shallow neural network.  

 
Figure 23. Two-layer feed-forward Artificial Neural Network. 
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3.4 Focus: Artificial Neural Networks versus Support Vector Machines 

Support Vector Machines (SVMs) are a Machine Learning methodology for classification and 
non-parametric regression based on kernel functions. They have been proposed for the first time 
by Vapnik in 1995.   

Support Vector Machines (SVM) are classifiers using hyperplanes able to separate two classes 
and when they apply a sigmoidal kernel function, they are equivalent to a Perceptron (1 input 
layer and 1 output layer). Elements of the initial sample are vectors with all characteristics (or 
features) describing them. The main goal of the algorithm is to find a hyperplane able to separate 
vectors, and all vectors near to the optimal hyperplane are called “support vectors”. Let us 
consider the figure 24, where there is a sample of data represented in two dimensions (i.e., the 
vectors contain two features f1 and f2. Each vector is an element of the database). From panel (a) 
of figure 24 we can easily understand that there is an infinite number of lines (dashed lines in red) 
that can separate the two classes represented. Panel (b) presents the results of the SVM algorithm 
searching the optimal boundaries maximizing the distance between the two groups (dashed lines 
in green). Boundaries are searched in order to be adjacent to vectors, that from now are called 
support vectors (in green in the panel (b)). The distance between the two boundaries is called 
margin, and in the area between the two boundaries there should be no points. Clearly, in reality 
it is possible (and highly probable) that data are in the area between boundaries. In this case, a 
technique called softmap is applied in order to consider the distance between the point in the area 
and the boundary near the support vector of the same class of the non-classified point (this is the 
case of non-completely separable classes).  

From the mathematical point of view, the SVMs can be solved with a quadratic programming 
under constraints.  

 

 
(a)                                                   (b) 

Figure 24. Support Vector Machine algorithm. 

 
However, not always it is possible separating the classes without difficulties, even with the 

softmap algorithm, then a solution is mapping data in a space (i.e., feature space) with more 
dimensions than the starting space. For instance, we can transform data from two dimensions in 
three, and observe if now classes are well separated. Even if this approach is computational 
expensive when the number of dimensions is high, the SVMs adopt a kernel function that allows 
to obtain the benefits of mapping in a higher-dimensional space without really applying it (i.e., 
the process is called kernel trick). There are many kernel functions (i.e., linear, polynomial, 
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Gaussian, exponential, Laplace, sigmoidal, hyperbolic-tangent, quadratic, …), and choosing the 
optimal is not a simple work. The solution is trying empirically.  

SVMs are very powerful Machine Learning techniques that are often used together with 
ANNs. However, they work well when classes are linearly or non-linearly separable, but when 
the dimensionality increases results are not satisfying, and their ability in classifying decreases 
dramatically. 

For an exhaustive explaination of this Machine Learning technique, see Suthaharan S. (2016).  

4 Modelling Artificial Neural Networks 

4.1 Functions for ANNs 

For solving the examples in previous sections, we have applied the three following functional 
operations without realizing it: 

 
1. The weight function: it is the product of weights times input(s).  
2. The net input function: it is the function used for considering the bias (in general, it is the 

product of a weight times the input, but other functions exist). 
3. The transfer (or activation) function: it is the function producing the outputs starting from the 

net input (in the examples the ReLU or hard-limit/step function).  
 

First two functions are represented by the equation [1], and in 
general the sum of product is the most frequently adopted. However, 
for the record, many other functions exist and also the NN designer can 
define a new weight or net input function. For instance, in recent years, 
the convolution weight function is applied when the problem is the 
image detection. In this case, the function returns the mathematical 
convolution of weights matrix and inputs. Another example is the use 
of “distance functions”4, very well-known in clustering models, as weight/net input functions. 
Later, we will present some network architectures requiring weight and net input function 
different from the sum of product. 

On the contrary, the attention of the ANN user on the transfer function (i.e., equation [2]) has 
to be very high. Indeed, if we apply an activation function that does not fit, the ANN returns 
erroneous results. 

4.1.1 Transfer or Activation functions 

In this section, we briefly show the most frequently applied transfer functions in Artificial 
Neural Networks. 

Let us consider equations [1] and [2] reassumed in the following expression: 

                                                      
4 In Appendix A there is a brief description of main distance measures.  

Equation [1]  

𝑢𝑢𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

Equation [2] 
𝑦𝑦𝑘𝑘 = 𝜑𝜑(𝑢𝑢𝑘𝑘) 
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y = 𝜑𝜑(𝑢𝑢𝑘𝑘) = 𝜑𝜑��𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

� 

Figure 25 shows two unit-step functions: the hard-limit (or step) function and the symmetric 
hard-limit one. 

 
Hard-limit/step function: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑘𝑘) = �
1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
 0 𝑖𝑖𝑓𝑓 𝑢𝑢𝑘𝑘 < 0 

This function, that we have used intensively in the logic gates examples, describes the rule 
“all-or-none” of the basic model of McCulloch-Pitts. 

 
Symmetric hard-limit function: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑘𝑘) = �
1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
−1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 < 0 

 
Figure 25. Hard-limit and Symmetric hard-limit functions. 

In both cases, functions return only two values: the hard-limit function returns 0 or 1; whereas 
result of the symmetric hard-limit can be -1 or +1. 

Figure 26 presents linear and positive linear functions. In general, the linear function is used 
in the output layer because the non-linearity, that is one of the main characteristics of Deep 
Learning, is represented in hidden layers.  

 
Linear function:  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑘𝑘) = 𝑎𝑎𝑢𝑢𝑘𝑘 + 𝑏𝑏 
 
Positive linear function: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑘𝑘) = �
𝑢𝑢𝑘𝑘 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
0 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 < 0  

 
The ReLU function applied in previous section is a particular case of positive linear function, 

where if result is positive, the function returns its maximum value.  
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Figure 26. Linear and Positive linear functions. 

 
Figure 27 shows the triangular basis and the radial-basis functions. The first one is applied 

rarely; on the contrary the radial basis function characterizes the homonymous ANNs presented 
in section 6.2. 

 
Triangular-basis function:  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑢𝑢𝑘𝑘) = �1-|𝑢𝑢𝑘𝑘| 𝑖𝑖𝑖𝑖 −1 ≤ 𝑢𝑢𝑘𝑘 ≤ +1
0       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
Radial-basis function: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑢𝑢𝑘𝑘) = 𝑒𝑒−𝑢𝑢𝑘𝑘
2
 

 
Normalized Radial-basis function:  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑢𝑢𝑘𝑘) =
𝑒𝑒−𝑢𝑢𝑘𝑘

2

∑ 𝑒𝑒−𝑢𝑢𝑘𝑘2
 

The function is equivalent to the radial-basis, except that output vectors are normalized by 
dividing by the sum of the pre-normalized values. 

 
Figure 27. Triangular and Radial-basis functions. 
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Figure 28 presents two of the most frequently adopted functions: the logistic and the 

hyperbolic tangent sigmoid functions. These two functions are the continuous version of the hard-
limit and symmetric hard-limit functions.   

 
Logistic function:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢𝑘𝑘) =
1

1 + 𝑒𝑒−𝑢𝑢𝑘𝑘
 

this function returns values between 0 and 1. 
 
Hyperbolic tangent sigmoid function: 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑢𝑢𝑘𝑘) =
𝑒𝑒−𝑢𝑢𝑘𝑘 − 𝑒𝑒−𝑢𝑢𝑘𝑘
𝑒𝑒−𝑢𝑢𝑘𝑘 + 𝑒𝑒−𝑢𝑢𝑘𝑘

 

this function returns values between -1 and +1. 
 

 
Figure 28. Logistic and Hyperbolic tangent sigmoid functions. 

 
The following two functions are used when ANNs are applied for clustering. Indeed, the 

competitive function is successfully applied in Probabilistic Neural Networks (section 6.2.2), Self-
Organizing Map (section 6.4.1) or Competitive Networks (section 6.4).  

 
Softmax function:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢𝑘𝑘) =
𝑒𝑒𝑢𝑢𝑘𝑘
∑ 𝑒𝑒𝑢𝑢𝑘𝑘

 

This function is used also for transforming output between 0 and 1 and having as result a 
probabilistic value (Figure 29).  
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Figure 29. The softmax function.  

The Competitive function assigns 1 to the maximum value presented.  
For instance, let us see figure 30. If uk= [-2; 0.9; 0.1; -0.2], then y= compet(uk) = [0; 1; 0; 0]. 

The second input element is the highest one, then the corresponding result is 1.  

 
Figure 30. The competitive function.  

(The first, the third, and the fourth element of the input vector uk present a result equal to 0). 
 

Which activation function to adopt is often a question mark, and the most efficacy method is 
“try, change, and try again”. However, there are some considerations that we can take into account 
when we are programming the ANN. In details: 
• Classification Problems #1 (for instance, 2 classes and 1 output) 

o For example, considering a two-layer network, we should use a logistic/hard-limit 
between the hidden and the target/output layer, and a logistic function between input 
and hidden layer. If the network presents more than one hidden layers, the optimal 
transfer function should be the logistic one. The logistic function can be substituted 
the hyperbolic tangent sigmoid function.  
Notice that the adoption of a logistic function in the output layer allows to obtain a 
probability result. For example, an output of 0.7 on a unit corresponding to a 
particular class would indicate a 70% chance that the input data represents a member 
of that class. 

• Classification Problems #2 (for instance, multiple-classes and 1 output per class)  
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o Between the hidden and the output layers, we should apply a softmax transfer 
function, whereas, in other layers a logistic or a hyperbolic tangent sigmoid function 
should be adopted. 
In general, if we have more than two classes, and we use one output unit for each 
class, we need to use the softmax activation function. However, it is also possible to 
adopt different network design, as suggested by Falavigna (2012). 

• Regression/ Function Approximation Problems  
o In the last layer (from hidden to output/target layer), we should adopt a linear (or 

positive linear) transfer function, whereas in other layers a logistic or a hyperbolic 
tangent sigmoid function should be implemented. 
In this case, the output is not dichotomous or discrete, but continuous. In this case, 
the goal of the network is modelling the distribution of the output variables 
conditioned by the input variables.  

• Clustering: in general, a competitive transfer function is applied. 
 
Notice that previous considerations on the adoption of transfer functions are not rules, but only 

suggestions provided by applications presented by literature. Following the philosophy of ANNs, 
the model has to learn from reality, then also transfer functions can be different on the base of the 
specific analysed reality. 

Finally, it is noteworthy that, when the expected result (i.e., the output) is dichotomous, it is 
possible to use a continuous transfer function and to apply an algorithm in order to find a threshold 
able to assign output values under the threshold to 0 and over the threshold to 1, as proposed by 
Falavigna (2012).  

4.2 Artificial Neural Networks architectures 

In previous sections, we have introduced the concept of neuron, the functions and its working, 
finally we have built our first two-layer feed-forward Artificial Neural Network. 

However, even if our simple ANN works very well in solving logic gate problems, the research 
in this field has grown hand in hand with the increases of computational capabilities of computers.  

In this paragraph, we present different architectures of networks considering the number of 
layers, the typology of connections, and finally the method of learning.  

In the history of ANN, the first definition of a network is the Perceptron, represented by the 
connection of more Threshold Linear Unit (TLU) of McCulloch and Pitts.  

Increasing the complexity, and, at the same time, the flexibility, the ANNs presented more 
layers, more neurons, and not only feed-forward connections but also back-ward ones.  

In this regard, please note that in ANNs the counting index of layers starts with the first hidden 
layer up to the output layer, and, in general, the set of inputs is also indicated as a layer (i.e., input 
layer), but this is not counted in the number of layers of the network. Until now, with logic gate 
operators, we have seen some single-layer networks (i.e., Perceptrons for AND, OR, NAND) and 
a shallow ANN (i.e., two-layer FFNN/Perceptron for XOR). 

In details, we can identify three architectures (figure 31): 
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1. Single-layer Feed-forward NNs or (Single-layer) Perceptron: One input layer and one 
output layer of processing units. “Feed-forward” means that there are not feed-back 
connections: all synapses travel from left to right (e.g., a Single-layer Perceptron, figure 
31 (a)). 

2. Multi-layer Feed-forward NNs (less commonly called Multi-layer Perceptron): One input 
layer, one output layer, and one or more hidden layers of processing units. For instance, 
in figure 31 (b) is presented a two-layer feed-forward ANN (or Shallow Neural Network). 
Even in this case, “Feed-forward” means that synapses travel from left to right: feed-back 
connections are absent (note that if there are 2 hidden layers ANNs are called Shallow 
Neural Networks or Deep Learning if the complexity of architecture increases). 

3. Recurrent NNs: Any network with at least one feed-back connection. It may, or may not, 
have hidden units. (e.g., a Simple Recurrent Network, figure 31 (c)). 
 

Figure 32 presents the more frequently used neural networks subdivided on the base of 
connection typology. These frameworks will be presented later in the text. It is necessary to 
specify that models presented are not exhaustive, because the flexibility of NNs allows users to 
design network on the base of problem analysed.  

 
(a)                                         (b)                                                    (c) 

Figure 31. Network architectures. 

 
Another characteristic of the ANN working is the training phase. Thinking of logic gate 

examples, we found that a neuron or a simple ANN is able to learn from the target and find the 
best weight that minimizes the errors. 

From this point of view, there are two different methods of training: 
• Supervised training or learning with a teacher: the current output of the network is compared 

to the desired one (target). The weights are adjusted for minimizing the error between the 
current output and the target. This adjustment is carried out iteratively with the aim of 
eventually making the neural network obeys the teacher. A typical example of supervised 
learning is when students have written an exam, and having the exam marked by the teacher 
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and shown which questions the students answered incorrectly. After being shown the correct 
answers, the students are expected to learn then understand how to answer those questions 
correctly. 

• Unsupervised training or learning without a teacher or self-organized learning: there are only 
the inputs and targets are not presented to the network. The layer is competitive (i.e., 
competitive transfer function), and through the competition neurons are grouped. The layer 
adopts a “winner-takes-all strategy”, where the neuron with the greatest total input wins the 
competition and turns on; all the other neurons switch off. The most common unsupervised 
networks are the Self-Organizing (Feature) Maps (i.e., SOM or SOFM). They present an 
efficient learning algorithm able to represent non-linear complex functions. Example of 
unsupervised learning is the man that is learning how to ride a car by himself. He will start 
by entering the car and start the engine with the ignition key, then put down the clutch and 
put the car in first gear and press the accelerator for the car to move forward and then manage 
to control the steering. He continually practices the driving steps in a large open field and 
gradually masters the driving technique, and then over time starts to enter the road to drive 
skilfully.5 

                                                      
5 The example is inspired by Beale et al. (2019).  
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Figure 32. ANN architectures on the base of connections. 
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4.3 Training and Validation 

Therefore, the time to understand how the ANN learns has come. First of all, it is necessary to 
point out the meaning of some terms. 

The ANN is trained on a sample of data of which we know the input variables and also the 
targets. For example, we want to know the weather of tomorrow (sunny or wet). We build a 
sample of observations where input variables are pressure, temperature, wind, and so on… the 
target is the information for each observation of the weather (sunny or wet). In this first step (i.e., 
training), we divide the sample into two subsamples and we use the first one (i.e., the training 
set), that is the biggest (in general 2/3) for “training” our network. Here, the NN learns from the 
training set rules linking the inputs so that training patterns are correctly classified. Pay attention 
to weights because they are the collectors of these information.  

Once the training sample is correctly classified (our forecasting is correct) or the error is very 
small, the remaining observations of the initial sample (1/3, the validation set) is used for 
validating and testing if ANN has learned well in the training phase. This validation phase is 
crucial because is a test for the network: if ANN does not fail in the validation phase it is ready 
to classify patterns it has never “seen” before (the so called “out-of-sample” observations). In this 
manner, the ANN applies the learnt lesson from the training set on remaining data (validation 
set), testing its ability to generalize. 

Figure 33 shows these two phases: the first is a learning or training phase. The ANN learns to 
recognize rules among patterns and it stores them in the weights’ matrixes. In the following phase 
(i.e., generalization or validation phase), the ANN tests its ability and if it has been able to learn 
well the lesson, we can generalize results on similar out-of-sample data.  

 

 
Figure 33. Training, Validation, Learning and Generalization. 

 
The rule of subdividing the initial sample in the proportion of 2/3 for training and 1/3 for 

validation can be changed, but it is necessary that the training set is representative of the reality 
investigated. For learning well, ANN needs large amount of data, and, at the same time, they 
should be pre-processed for deleting possible outliers.  
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However, looking at complex models, it is possible to use an automated algorithm for feature 
selection. These algorithms work assigning even more small weights to non-representative 
features, until these last are eliminated from the model.  

In section 7.1, good-practices of pre-processing activities are suggested.  
 
It is then clear that the decisive phase is that of training, because is here that ANN learns and 

it has to learn well. We call back-propagation algorithm the automated process applied for 
updating the weights, and in next section, we will deepen this procedure.  

4.4 The training process 

Until now, we have only said that ANN learns from data and stores information into weights’ 
matrixes; however, we have not investigated how ANN updates weights, then, now, we will see 
the idea under the back-propagation process.  

At the beginning, weights are randomly initialized and adjusted step-by-step until the results 
(outputs) are satisfying (i.e., there is no difference between targets and outputs, or the difference 
is very little). This process assumes that the ANN has “to repeat the lesson” more times before 
arriving to obtain correct weights.  

In addition, the reader must know that the rules presented here are not the only possible ones, 
but they are the most frequently used and the working mechanism is always the same.  

4.4.1 The Perceptron learning rule 

Let us consider a simple neuron with binary inputs and a binary target at time t. Weights are 
defined by wij(t) and the basic idea is updating weights with a small amount Δwij(t). In this manner, 
at time (t+1) we obtain:  

wij(t +1) = wij(t) + Δwij(t). 
Suppose that the target output of unit j is targj while the actual output is yj. The activation 

function is the hard-limit, then: 

yj = hardlim(∑xi∙wij)=�
1 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 ≥ 0
0 𝑖𝑖𝑖𝑖 𝑢𝑢𝑘𝑘 < 0 

Notice that the target is the correct output, while the actual output (yj) is the response of the 
neuron. 

Now, we are ready to “attend school” our neuron, and to observe its learning. A solution for 
learning well is to update weights with small changes, following the “if… then” rule:  

 
• If yj is equal to targj then we can do nothing because (targj – yj ) is equal to 0 and wij are 

optimal weights 
• If yj = 1 and targj = 0, (targj – yj) = (0 –1) = -1 and ∑xi∙wij is too large, then we have to reduce 

it. Notice that xi is a binary variable and we can act only on the weights: 
• when xi = 1 we have to decrease wij: wij – η(targj – yj) xi = wij – η(-1)xi= wij + ηxi; 
• when xi = 0, xi∙wij = 0, so wij – η = wij – ηxi = wij – 0 = wij; 

then wij → wij – ηxi 
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Reasoning: why ∑xi∙wij is too large? The response of the neuron yj is the result of the hard-
limit function. If yj is equal to 1, this means that ∑xi∙wij is higher than 0, so it is necessary 
to diminish it. In which manner? How much we have to diminish the value? The input 
variable xi is done, then we can act only on the weights. We start defining a “rate” η in 
order to decrease iteratively the values of weights and to find those wij such that the 
response of neuron is equal to the corresponding target (targj – yj  = 0). 

• If yj = 0 and targj = 1, targj – yj = +1 – 0 = +1 and ∑ xi∙wij is too small, then we have to 
increase it. Even in this case, notice that xi is a binary variable and we can act only on the 
weights: 
• when xi = 1 we have to increase wij: wij + η(targj – yj) xi = wij + η(+1)xi = wij + ηxi; 
• when xi = 0, xi∙wij = 0, so wij + η = wij + ηxi = wij + 0 = wij; 

then wij → wij + ηxi 
Reasoning: why ∑xi∙wij is too small? The response of the neuron yj is the result of the 
hard-limit function. If yj is equal to 0, this means that ∑xi∙wij is lower than 0, so it is 
necessary to increase it. In which manner? How much we have to increase the value? The 
input variable xi is done, then we can act only on the weights. We start defining a “rate” 
η in order to increase iteratively the values of weights and to find those wij such that the 
response of neuron is equal to the corresponding target (targj – yj  = 0). 

•  The solution is  
𝑤𝑤𝑖𝑖𝑖𝑖∗  → wij + η∙(targj – yj)∙xi; 
 
Δwij = η∙(targj – yj)∙xi  Perceptron Learning Rule 
 

The positive parameter η is called the learning rate or step size and it defines how smoothly 
we shift the decision boundaries. The Perceptron Learning Rule needs to be applied repeatedly 
and one pass through all weights for the training sample is called one epoch of training.  

Clearly, the main goal of the presented algorithm is to minimize the difference between target 
and output, so the rule stops when Δwij is as closer to 0 as possible.  

 
There are other learning rules, as for example the Hebbian l. r. that was the first one proposed 

for solving the Perceptron neuron.  
The Hebbian learning rule specifies how much the 

weight of the connection between two units should be 
increased or decreased in proportion to the product of 
their activation. On the base of the rule “Cells that fire 
together, wire together”, Hebb (1946) defined that if two neurons had the same output, the weight 
of the connection would increase (increase of weight), otherwise the weight decreases. This rule 
has been implemented in the first Perceptron proposed by Rumelhart et al. (1986, 1987), but this 
learning rule requires the orthogonality of data, and this is a big limit to their extensive 
applications.  

4.4.2 The Error Back-propagation and gradient descent algorithm 

The process used by the neuron or network for updating weights is called back-propagation 
algorithm, and obviously, increasing the complexity of network, also the mathematical 

The Learning rule is a method 
applied repeatedly to the ANN 
with the aim to improve the 
performance of network. 
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formalization increases. However, the idea is the same seen for the learning rule, but here, the 
inputs can be non-binary, the network is multi-layered, and the activation function is not necessary 
a hard-limit.  

The goal of the back-propagation is always updating weights for minimizing the errors and for 
obtaining that the response of the network corresponds to the presented target. 

Even in this case, the process is “adaptive” because weights are updated step-by-step. 
 
Let us consider an ANN with two layers (i.e., one hidden layer and one output layer) where 

z= [𝑧𝑧1, 𝑧𝑧2, ⋯, 𝑧𝑧s] is the output vector of a two-layer Feed-Forward Neural Network (i.e., FFNN), 
and x = [𝑥𝑥1, 𝑥𝑥2, ⋯, 𝑥𝑥d] is the input vector. The target (i.e., the real output) is t = [𝑡𝑡1, 𝑡𝑡2, ⋯, 𝑡𝑡𝑠𝑠] and 
𝑡𝑡𝑖𝑖 can be equal to +1 or -1. The FFNN is presented in Figure 34.  
 

 
Figure 34. Two-layer Feed-Forward Neural Network (i.e., one hidden and one output layer). 

 
The output zk of the network can be found solving the following equation: 
 
 
 
 
 
The equation shows that the output depends strictly from all weights, and from activation 

functions. Notice that in this architecture there are two transfer functions: one from input to hidden 
layer (i.e., f1), and one from this last and the output layer (i.e., f2). In addition, these functions may 
differ from each other.  

Starting from this consideration, we can define the final error of network as a function of inputs 
and weights. This function is a loss function, and it is defined as6: 

𝐽𝐽(𝒘𝒘,𝒙𝒙) ≡
1
2
�(𝑡𝑡𝑐𝑐 − 𝑧𝑧𝑐𝑐)2
𝑠𝑠

𝑐𝑐=1

 

The error J(w) on the entire training set is the average of J(w, x) on all patterns x belonging to 
the training set. 

The problem to solve is always the same: how to reduce J(w)? 
We can reduce it modifying the weights (w) in the opposite direction to the «gradient j».  

                                                      
6 This is not the only loss function possible. Indeed, the Sum Squared of Errors (SSE) is often used, or the Mean Squared 
Error (MSE) too. See section 4.5 for details.  

Input NN = x= [𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑑𝑑] 
Output NN = 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑠𝑠] 
Real output = Target = t = [𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑠𝑠] 

𝑧𝑧𝑘𝑘 = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑤𝑤0𝑘𝑘

ℎ

𝑗𝑗=1

� = 𝑓𝑓2 ��𝑤𝑤𝑗𝑗𝑗𝑗 ∙ 𝑓𝑓1 ��𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑤𝑤0𝑗𝑗

𝑑𝑑

𝑖𝑖=1

�
ℎ

𝑗𝑗=1

+ 𝑤𝑤0𝑘𝑘� 
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The gradient indicates the direction of greatest growth of a function (of several variables), then 
moving in the opposite direction we can reduce (to the maximum) the error. 

When the minimization of the error occurs through steps in opposite direction to the gradient, 
the back-propagation algorithm is also referred to as gradient descent. 

When in ANN the back-
propagation algorithm is taken into 
consideration, in general, it refers to 
gradient descent or to the “Stochastic 
Gradient Descent” (i.e., SGD) 
algorithm that updates weights 
subdividing randomly the input 
patterns of the training set. However, 
many other back-propagation 
algorithms exist, as, for example, the 
Levenberg-Marquardt algorithm, the 
Bayesian Regularization, and so on7. 
In these cases, the habit is calling 
directly the name of the optimization 
algorithm. In general, the difference 
among algorithms is based on the 
mathematics used for minimizing the 
errors of the ANN.  

Even if the mathematics is more complex, the problem is always the same: finding a procedure 
for updating the weights and minimizing the error. 

4.4.2.1 𝑤𝑤𝑗𝑗𝑗𝑗 hidden-output update 

We start calculating the partial derivative of function J with respect to 𝑤𝑤𝑗𝑗𝑗𝑗 that are weights 
between hidden and output layers: 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
�

1
2
�(𝑡𝑡𝑐𝑐 − 𝑧𝑧𝑐𝑐)2
𝑠𝑠

𝑐𝑐=1

� = (𝑡𝑡𝑘𝑘 − 𝑧𝑧𝑘𝑘)
𝜕𝜕(−𝑧𝑧𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= ⋯ = −(𝑡𝑡𝑘𝑘 − 𝑧𝑧𝑘𝑘)𝑓𝑓2′(𝑛𝑛𝑛𝑛𝑛𝑛)𝑦𝑦𝑗𝑗 

 
Notice that only 𝑧𝑧𝑐𝑐 depends from 𝑤𝑤𝑗𝑗𝑗𝑗.  
Fixing 𝛿𝛿𝑘𝑘 = (𝑡𝑡𝑘𝑘 − 𝑧𝑧𝑘𝑘)𝑓𝑓2′(𝑛𝑛𝑛𝑛𝑛𝑛), then the gradient is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= −𝛿𝛿𝑘𝑘𝑦𝑦𝑗𝑗 

and we can reduce the weights in the opposite direction to the gradient:  
𝑤𝑤𝑗𝑗𝑗𝑗= 𝑤𝑤𝑗𝑗𝑗𝑗 + 𝜂𝜂𝛿𝛿𝑘𝑘𝑦𝑦𝑗𝑗 

where η is exactly the learning rate. 

                                                      
7 See for recent advancements in learning rule Farizawani et al. (2020) and Shrestha & Mahmood (2019). 

What does “gradient descent” mean? 
Let us consider that we want to reach the top of a 
mountain as quickly as possible.  
The most efficient solution is to remount the 
mountain following the line of maximum slope.  This 
means that we have to measure iteratively the slope 
of the mountain in order to know which path is the 
quickest. 
Technically, if we are at the valley bottom and we 
want to reach the top of the mountain, we can use 
the method of the gradient ascent; conversely, if we 
are on the top of the mountain and we want to reach 
the valley bottom (mathematically, the global 
minimum), we can adopt the algorithm of the 
gradient descent.  
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4.4.2.2 𝑤𝑤ij input-hidden update 

We start calculating the partial derivative of function J with respect to 𝑤𝑤ij that are weights 
between input and hidden layers: 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
�

1
2
�(𝑡𝑡𝑐𝑐 − 𝑧𝑧𝑐𝑐)2
𝑠𝑠

𝑐𝑐=1

� = ⋯ = −�𝛿𝛿𝑐𝑐𝑤𝑤𝑗𝑗𝑗𝑗𝑓𝑓′�𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗�𝑥𝑥𝑖𝑖 = −𝑥𝑥𝑖𝑖𝑓𝑓1′(𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗)�𝑤𝑤𝑗𝑗𝑗𝑗𝛿𝛿𝑐𝑐

𝑠𝑠

𝑐𝑐=1

𝑠𝑠

𝑐𝑐=1

 

 
Notice that only 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 depends from 𝑤𝑤ij.  
Fixing 𝛿𝛿𝑗𝑗 = 𝑓𝑓1′(𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗)∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝛿𝛿𝑐𝑐𝑠𝑠

𝑐𝑐=1 , then the gradient is: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= −𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖 

and we can reduce the weights in the opposite direction to the gradient:  
𝑤𝑤𝑖𝑖𝑖𝑖= 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜂𝜂𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖 

where η is exactly the learning rate. 

4.4.2.3 Incremental vs Batch training 

Another point to take into consideration is when the weights are updated. 
Literature suggests two possibilities: 
 

1. The incremental training (or sequential or online): it starts setting up the network with zero 
initial weights, biases, and learning. The weights are updated as each input is presented. 

2. The batch training (or offline): it provides that weights and biases are only updated after all 
the inputs and targets are presented. In this case, remember that one pass through all weights 
for the whole training set is called “epoch of training”. 
 

In general, the incremental training is used for dynamic networks, whereas the batch training 
is more suitable for static ones.  

4.4.3 When stopping the training process? Overfitting and Regularization 

One of the most sensitive problem of the learning process is when ANN became very able to 
recognize the training sample, but ANN fails when new subjects/elements are presented. In this 
case, the ANN is not able to generalize, and this is a very big problem. 

This issue is called Overfitting and it happens when in training data there is a noise, for the 
limited size of training sample, and for the complexity of classifiers (Ying, 2019). 

One of the simplest methods for getting over the overfitting is the Early Stopping 
Regularization. As shown in figure 35, during the learning on training set, the error (E on the 
ordinate axis) tends to 0 because the network is learning better. We can observe that the curve of 
errors of validation set decreases until a minimum and after it starts increasing. The ANN stops 
the learning at the epoch of minimum error obtained for the validation set. 
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Figure 35. Early stopping regularization. 

 
Which is the meaning of this rule? The increase of errors on validation set means that the ANN 

is not able to recognize well the unknown data (because they are not in the training set). For this 
reason, stopping the training phase when the error on validation is the minimum allows to obtain 
probably an error, but that is the minimum possible.   

4.4.4 Back-propagation algorithm: global or local minima?  

The back-propagation and the gradient descent show that errors weights are strictly linked. 
Thanks to this algorithm, weights are updated with the aim to decrease the error until 0, and thanks 
to the multi-layered architecture of the ANN, weights for each neuron are adjusted on the base of 
other neurons. However, increasing the complexity of network, also the probability to find a local 
and not global minimum exists. Following Domingos (2015), let us consider a simple network 
with only one weight, where the relation is expressed by the figure 36. 

 

 
Figure 36. Weight and error, an example. 

 
The curve shows its global minimum when weight is equal to 3 that represents the optimal 

weight. However, this is true only if weight has been initialized with a value lower than 3. What 
happens if weight is initialized to 7? In this case, the optimal weight is 9 that corresponds to a 
local minimum. This could be a significant problem, because back-propagation, moreover when 
the complexity of architecture increases, can suggest fake results minimizing the error on local 
and not global minimum. The weight remains as entrapped in the hollow of the curve, without 
distinguishing the type of minimum, and this can lead to learning errors. However, even if this is 
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a weakness of the algorithm, today is shown that the local minimum is, all the same, a good result, 
and often it is preferable. Increasing the number of layers, the weight remains entrapped in a local 
minimum only if it happens in all layers, and this is an improbable possibility. As suggested by 
Domingos (2015), also local minima allow to obtain satisfying results.  

4.5 The Performance of Artificial Neural Networks 

The performance of ANN is prevalently calculated through the Sum Squared Error (SSE) that 
is measured as the sum of squared differences between targets and ANN outputs:  

 
Sum Squared Error (SSE) = 

= �(𝑒𝑒𝑖𝑖)2 = �(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 

However, the average of SSE can be used. In this case, we adopt the Mean Squared Error 
(MSE) that computes the mean squared error loss between target values and network predictions: 

 
Mean Squared Error (MSE) = 

=
1
𝑁𝑁
�(𝑒𝑒𝑖𝑖)2 =

1
𝑁𝑁
�(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 

 
A similar measure is the Root Mean Squared Error (RMSE) that is nothing else than the root 

of the MSE: 
 

Root Mean Squared Error (RMSE) = 

= �
1
𝑁𝑁
�(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

 
When the ANN is used for classification problem, it can be also convenient to evaluate the 

classification power through the Receiver Operating Characteristic curve (ROC) and the 
corresponding Area Under the Curve (AUC). However, this methodology can be applied when 
the output is binary (or if it is possible to transform outputs in dichotomous results). 

The ROC is the graphical representation of the true positive rate (sensitivity) on the ordinate 
axis and false positive rate (1-specificity) on the abscissa one. 

For understanding the sensitivity and specificity, let us consider the following confusion 
matrix in table 3. Columns represent the real output (the target), whereas, the rows represent the 
empirical outputs provided by the model.  

The sensitivity is defined as: 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

and a high value means that an element positive in the reality will never be classified as 
negative by the model. 

The specificity is defined as: 
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𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

and a high value means that an element negative in the reality will never be classified as 
positive by the model.  

 

Model 
Reality 

P N 

+ 
True Positive (TP) 

An element positive in the reality that is 
classified positive by the model 

False Positive (FP) 
An element negative in the reality that is 

classified positive by the model 
(Type I error) 

- 

False Negative (FN) 
An element positive in the reality that is 

classified negative by the model 
(Type II error) 

True Negative (TN) 
An element negative in the reality that is 

classified negative by the model 

Table 3. Confusion Matrix. 

 
The coronavirus disease 2019 (COVID-19), declared global pandemic on 11 March 2020 by 

the World Health Organization (i.e., WHO), provides us the opportunity to make an example of 
the meaning of these indicators. Consulting the Italian National Institute of Health website (i.e., 
Istituto Superiore della Sanità)8, we read that tests carried out on the nasal antigenic swab provide 
the following results relating respectively to sensitivity and specificity: 70-86% and 95-97%. 
Results on sensitivity suggest that the probability that a patient really sick is classified as healthy 
ranges between 14% and 30% (1-sensitivity). On the contrary, results on specificity suggest that 
the probability that a patient really healthy is classified as sick ranges between 3% and 5%. So, if 
the result of an antigenic swabs is positive, we can be confident to have the COVID19 (i.e., the 
specificity is high); otherwise, if the result of the swab is negative, we cannot be completely sure 
that the result is correct, and that the negative result is in reality a false negative (i.e., the sensitivity 
does not present comfortable values: from 14% to 30% is a big range).  

 
An example of the ROC curve is presented in figure 37 where are compared the performance 

of three hypothetical models. The AUC is the area under the ROC curve and the model fitting 
well is that with the highest AUC value. In this specific case, the Model 1 (blue curve) is the best 
one.  

The AUC represents the probability of correct prediction based on probabilities estimated by 
the model. The rule of thumb indicates that: 

• when AUC = 0.50 the model has no discriminatory capacity. 
• when AUC varies between 0.70 and 0.80 the model has an acceptable discriminator power. 
• when AUC ranges between 0.80 and 0.90 the model discriminated in an excellent way. 
• when AUC> 0.90 the model has a “super-excellent” discrimination power. This result is 

very difficult to obtain in real applications.  
 

                                                      
8 Data are extracted from https://www.iss.it/primo-piano/-/asset_publisher/3f4alMwzN1Z7/content/diagnosticare-
covid-19-gli-strumenti-a-disposizione.-il-punto-dell-iss (last visit January 15 2022) 

https://www.iss.it/primo-piano/-/asset_publisher/3f4alMwzN1Z7/content/diagnosticare-covid-19-gli-strumenti-a-disposizione.-il-punto-dell-iss
https://www.iss.it/primo-piano/-/asset_publisher/3f4alMwzN1Z7/content/diagnosticare-covid-19-gli-strumenti-a-disposizione.-il-punto-dell-iss


 
G. Falavigna 

 

52 

Finally, using these concepts, the Accuracy of the model can be computed as the ratio between 
the number of correct classifications and the sample size:  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 
The ROC curve, as well as the AUC, and the sensitivity and specificity rates are used in many 

fields where the evaluation of classification or prediction is required. They are very simple 
indexes, but powerful in terms of meaning. In addition, similar consideration can be done for 
MSE or RMSE, that are always used, for example, in regression analysis.  

 
Figure 37. ROC curves. 

Finally, starting from table 3, in pattern recognition and classification, two concepts linked to 
confusion matrix are often used:  

• Precision that is the Positive Predicted Value (PPV) measured as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

This index represents how many instances the model classifies correctly. 
• Recall that is the sensitivity presented before. It represents the robustness of the model and 

it indicates how many instances are missing. 
 

The harmonic mean of precision and recall give us the F1 score (also known as F-score or 
Sørensen-Dice coefficient or Dice Similarity Coefficient, DSC), that measures the test accuracy 
as follows: 

𝑭𝑭𝟏𝟏 = 2 ∙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇 + 1
2 (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

 

It can assume values between 0 and 1. It assumes a value of 0 only if at least one of the two is 
equal to 0, while it assumes a value of 1 if both precision and recovery are valid. Higher values 
indicate higher precision and recall of the model.  
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A general formulation of F-score is the Fβ score where β represents how much more relevant 
recall is than precision. In details, it is calculated as follows:  

𝑭𝑭𝜷𝜷 = (1 + 𝛽𝛽2) ∙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝛽𝛽2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
=

(1 + 𝛽𝛽2) ∙ 𝑇𝑇𝑇𝑇
(1 + 𝛽𝛽2) ∙ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹

 

Values of β depend from the importance that the user assigns to precision and recall. For 
instance, if β=2 the user considers the importance of recall twice that of precision. Notice that if 
β=1, the Fβ score is equal to the F1 score.  

 
Sum up, statistics offers many methods for evaluating the performance of a model, and the 

choice depends from the aims and the hypotheses of the analysis. For instance, if we are 
physicians, and we are testing a model helping us to choose for patients’ hospitalization, we are 
interested in a model able to maximize the sensitivity, so that a model able to correctly recognize 
if a patient needs to be hospitalized. However, a model maximizing the true positives can present 
low specificity, so that, it is possible that the model advises the physician to hospitalize a patient 
when it is not necessary. Obviously, from the financial point of view, this is not a good result for 
the manager of the hospital because a non-necessary hospitalization is a cost, but the physician is 
sure to hospitalize all those need cares.  

This evidence means that the goodness of results measured through these indexes cannot 
ignore the hypotheses of the model. An interesting case study on the trade-off between the 
physician and the manager aims is presented in Casagranda et al. (2016) and Falavigna et al. 
(2019). Other interesting applications and discussion on ANN performance can be found in 
Costantino et al. (2017), Falavigna et al. (2019), and Ippoliti et al. (2021). 

4.5.1 A “sticky note” on the accuracy: bias and variance 

A brief note is necessary about the accuracy in Machine Learning, because there are two 
concepts covering big relevance that are bias and variance. These two measures are relevant 
moreover when on testing sample the performance is not satisfying. Let us consider four friends 
(Paul, John, George and Ringo) going to the pub for a beer, playing music, and playing darts. Paul 
have an optimal aim and all his darts find its mark. In figure 38, Paul is in the lower left corner 
because both bias and the variance are low: 6 darts, all in the center of the aim. John is very short-
sighted and he has difficulty in focusing distant objects, then his results are really unsatisfying. In 
figure 38, John is in the top right corner, his performance presents high bias and high variance: 
only one dart is near to the target, and the other five are very far. If we would like to find a position 
on the board representing the mean of the 6 darts, we will find even the mean will be very distant 
from the target. We can then conclude that for John bias and variance are both very high. 

George is presented in the lower right corner of figure 38. We know nothing about his sight 
defects, but playing darts certainly is not his favorite activity; indeed, his darts are all close to 
each other, but well away from the center of the target: his bias is high, while the variance is low.  

Finally, Ringo is the most playful of his friends and has played darts without commitment. 
From figure 38, all darts are far from the center of the target, but trying to do a mean of his shots, 
the result is not far from the center. We can then conclude that for Ringo the bias is low and the 
variance is high.  
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This simple example (inspired by Domingos, 2015) shows that for evaluating the performance 
of a learner it is necessary to consider the bias (real mistake), and the variance (the distance 
between results and targets). 

For evaluating bias and variance of a model, it is necessary to compare its results on random 
subsample of the training set. If the model continues to do the same errors, the learner presents 
bias problem; if errors are not regular, the model presents variance problem and it is necessary to 
add data.  

 

 
Figure 38. Bias and variance for target shooting of Paul, John, George, and Ringo. 

 
Sum up, we realize that the “bias-variance dilemma” is a crucial issue in the evaluation of 

ML/DL model. In general: 
• The bias happens when erroneous 

assumptions are made in the learning 
algorithm. If the bias is high, the algorithm 
suffers from underfitting problem: the 
algorithm is not able to identify fundamental 
relations between inputs and targets. In 
figure 38, the result of George represents the 
problem of underfitting;  

• The variance depends from fluctuation in 
the training set. If the variance is high, the 
algorithm suffers from overfitting: the 
algorithm is confused by random noise in 
data of training sample. In figure 38, the 
result of Ringo represents overfitting 
problem.  

 
Figure 39 presents what happens when the algorithm suffers from overfitting (panel (a)), 

underfitting (panel (b)), and optimal performance (panel (c)).  

Bias: difference between the prediction of 
the algorithm and the correct value to 
predict. 
Variance: variability of model prediction 
for a given data point. 
Underfitting: a model is not able to 
capture the underlying pattern of the 
data. 
Overfitting the model captures the noise 
along with the underlying pattern in data. 
In this case, the problem is that data are 
very noisy.  
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(a)                                                          (b)                                                     (c) 

Figure 39. Overfitting, Underfitting and Optimal performance of a ML/DL algorithm (Adapted from Singh, 2018). 

4.6 An exercise with a Shallow Neural Network: performance and regularization 

Now, we are ready to understand the operational process of an Artificial Neural Network and 
the evaluation of results. In this section, we analyse a database in order to assign to each element 
a value, with the aim to evaluate the performance of the model and the regularization algorithm.  

 
Let us start using the bodyfat_dataset provided by Matlab R2019b representing a sample of 

252 people with the following 13 attributes: Age (years); Weight (lbs); Height (inches); Neck 
circumference (cm); Chest circumference (cm); Abdomen 2 circumference (cm); Hip 
circumference (cm); Thigh circumference (cm); Knee circumference (cm); Ankle circumference 
(cm); Biceps (extended) circumference (cm); Forearm circumference (cm); Wrist circumference 
(cm).  

For each of 252 people, we know the Body Fat9 and we want to define an ANN able to assign 
a Body Fat to people out-of-sample (i.e., people not 
comprised in the training sample) starting from these 
13 attributes. 

Then, we build a simple two-layer Feed-Forward 
Neural Network (i.e., FFNN) with 1 hidden layer 
(with 20 neurons) and 1 neuron in the output one 
(figure 40). 

The sample has been subdivided into 2 subsamples: the 70% of observations represents the 
training set, the remaining 30% represents the validation set. The activation function between the 
input layer and the hidden one is a hyperbolic tangent sigmoid function, while from the hidden to 
the output layer has been set a linear function. The choice of a linear function is due to the fact 
that the Body Fat is a continuous number. The weight matrix between input and hidden layer is a 
13x20 because we have 13 attributes and 20 neurons in the hidden layer, while from this last and 
the output layer weights are collected in a 20x1 vector. 

 

                                                      
9 The Body Fat is the portion of the human body that consists of fat (Medical Dictionary for the Health Professions and 
Nursing, 2012, from https://medical-dictionary.thefreedictionary.com/body+fat , last visit January 16 2022). 

Linear function: 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑘𝑘) = 𝑎𝑎𝑢𝑢𝑘𝑘 + 𝑏𝑏 

Hyperbolic tangent sigmoid function: 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑢𝑢𝑘𝑘) =
𝑒𝑒−𝑢𝑢𝑘𝑘 − 𝑒𝑒−𝑢𝑢𝑘𝑘
𝑒𝑒−𝑢𝑢𝑘𝑘 + 𝑒𝑒−𝑢𝑢𝑘𝑘

 

https://medical-dictionary.thefreedictionary.com/body+fat
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Figure 40. FFNN with 1 hidden layer with 20 neurons. 

 
The loss function adopted is the Mean Squared Error (MSE).  
When should the algorithm stop? The minimum value 

of MSE on validation set has been reached at epoch 3, as 
shown in figure 41. The back-propagation algorithm 
stops when the performance on validation set starts to 
increase, in this case this happened at epoch 3 (following the early-stopping criterion discussed 
in section 4.4.3) and the corresponding MSE (on the validation) is 16.67. 

 
Figure 41. Early stopping for FFNN. 

 
Another measure for evaluating the performance of ANN is to do a regression between the 

outputs of the NN and the targets. If the training is perfect, the network outputs and the targets 
are equal, but this perfect relationship happens very rarely in practice.  

Figure 42 presents regressions for training and validation. The dashed line shows the perfect 
result (target-output=0), the solid line draws the best fit linear regression line between outputs and 
targets (in blue for the training and in green for the validation).  

R value is the classic R-squared calculated in statistics and represents the goodness-of-fit of 
the regression. A value close to 1 indicates that there is an exact linear relationship between 
outputs and targets; a value close to 0 defines worse performance of ANN.  

In general, obtained value of R squared on validation set is not an unsatisfying result (i.e., 
0.85), but we may want to obtain a better result.  

First of all, we can try to re-run the FFNN because each time the network is initialized, the 
parameters (for instance, initial values of weights) are different and results could change.  
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Figure 42. Linear regression for training and validation sets. 

 
Figure 43 and figure 44 show respectively the performance on training and validation, and the 

regression between output and target for samples. The best value of MSE reached is 46.78 at 
epoch 3, higher than the previous result and also the R-squared of regression is lower in both 
cases (i.e., for training and validation sets) if compared with those obtained in previous model.  

 
Figure 43. Early stopping for re-initialized FFNN. 

 
Figure 44. Linear regression for training and validation sets (re-initialized FFNN). 

 

0 1 2 3 4 5 6 7 8 9

9 Epochs

10
-1

10 0

10 1

10 2

10 3

10 4

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

Best Validation Performance is 46.7839 at epoch 3

Train

Validation

Best



 
G. Falavigna 

 

58 

If we tried to re-initialized newly the network, we would find different results. Then, we will 
re-initialize the network until we are not satisfied.  

 
Another strategy could be changing the transfer function between the hidden to output layer 

in a logistic function. Results are very unsatisfying, indeed the lowest MSE is equal to 98.9 (figure 
45). However, this is not a surprising result because the target does not vary between 0 and +1, as 
instead the logistic function does.  

 

 
Figure 45. Early stopping for re-initialized FFNN with logistic function between hidden and output layer. 

 
We can do other trials, adding layers, modifying the number of neurons, and it is possible that 

we will find better result, but we will not.  
 
From the example, we have shown that many factors have to be considered when a ANN is 

run and that, when even one parameter changes, the ANN outputs also change.  
There is not a rule for understanding when the best performance is reached, but with Artificial 

Neural Networks, and in general Deep Learning methods, it is necessary to find empirically the 
solution, trying and trying again.  

 
In next paragraph, we will investigate the informative power of ANN’s parameters, and we 

will show why ANNs are used in a large variety of fields. 
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5 Galeotto was the algorithm and he who wrote it… Feature 
Selection with Deep Learning 

In present section, we explain how we can exploit information in matrix weights through a 
simple example. From the one hand, we will show the power of ANN in prediction/classification, 
and from the other hand, we will introduce two simple ways to do feature extraction. 10 

5.1 “Magic Mirror on the wall, will Juliet tell me yes?” 

Romeo and Juliet are friends and students: Romeo attends informatics and Juliet classical 
literacy. Romeo is secretly in love with Juliet and he would like to ask Juliet to go to the cinema 
one night, but he fears that her refusal. 

Is there any way to predict Juliette's reaction? 
Romeo is a very good student, but with girls he is very shy and then a bit clumsy. He decides 

to observe the habits and the behaviour of Juliet with the help of some friends and consulting the 
social networks.   

For 7 non-consecutive days, each evening Romeo investigates about: 
1. Did she have to study? 
2. Were we in the weekend (i.e., Saturday or Sunday)? 
3. Did she go out for a drink? 
4. Did she go out for dinner? 
5. Did she go to the cinema? 
6. It was raining? 

 
Romeo defines a table in which the rows correspond to the days and the columns to collected 

information (table 4). Value 0 means “No”, whereas value 1 identifies “Yes”: for instance, the 
day 1, it was raining, she had to study, it was not a weekend day, she went out for a drink, she did 
not go out to dinner, and finally she did not go to the cinema.  

 
Day Rain? Study? Weekend? Drink? Dinner? Cinema? 

1 1 1 0 1 0 0 
2 0 0 0 0 0 0 
3 0 0 0 1 0 1 
4 1 1 1 1 0 0 
5 0 0 1 0 1 0 
6 0 1 0 1 0 0 
7 1 1 1 1 1 1 

Table 4. Observation of Juliet habits. 

After a deeper study of the situation, Romeo is ready for asking Juliet to go together to the 
cinema. He checks that on Saturday it will not rain, Juliet should not go out either drinking or for 
dinner. However, she will have to study, and Romeo is doubtful.  

                                                      
10 The example has been run under R version 4.0.3, package neuralnet version 1.44.2. 
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While he was about to send the message on WhatsApp to Juliet, he remembers the Perceptron 
just studied. 

He then decides to build a neuron with a logistic activation function with the aim to predict if 
Juliet will say yes to his invitation. As loss function, Romeo adopts the Sum Squared Errors 
(SSE)=∑(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)2 and he decides to initialize 
randomly the weights.  

Figure 46 presents the neuron built by Romeo using the 
data in table 4. The Perceptron has 5 input variables (i.e., 
Rain, Study, Weekend, Drink, Dinner), the bias, and 1 target (i.e., Cinema). After the training and 
the validation phases, the error of the network is very low (i.e., 0.036), then Romeo can be 
confident about the results. 

 

 
Figure 46. Perceptron for Juliet. 

Now, as the Evil Queen of the Snow-White fairy tale, he interrogates the neuron as if it was 
the Magic Mirror: “Magic Mirror on the wall, will Juliet tell me yes?” 

The input is the following vector: 
 

Rain? Study? Weekend? Drink? Dinner? 
0 1 1 0 0 

 
and the response of the network (the output) is 0.00000864, a value really too low to be confident 
in a positive replay of Juliet. 

Nevertheless, Romeo does not give up and he analyses the weights of neuron with the aim to 
define a winner strategy.  

Five variable and 1 target-neuron, then the weights are collected in the following vector of five 
elements (table 5):  

 
 

Logistic function: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢𝑘𝑘) =
1

1 + 𝑒𝑒−𝑢𝑢𝑘𝑘
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Variables Weights 
Rain 0.849 
Study -4.744 
WE -1.194 

Drink 7.709 
Dinner 4.868 

Table 5. Weights for each variable (Perceptron with one target/output layer) 

 
Looking at the signs of weights, indicating how each variable affects Juliet's decision, Romeo 

infers the following considerations: 
• Juliet is certainly studious (high weight in absolute value, |4.744|), and if she has a lot to study, 

she will hardly come out (- sign). 
• However, Juliet enjoys very much having fun and having a drink with friends, indeed the 

variable “Drink” presents the greater weight with positive sign (+7.709). The same 
consideration for the dinner, the sign of the weight is positive (+4.868). 

• Juliet prefers going to the cinema not in the weekend (variable WE with negative sign, -
1.194). 

• The weather condition does not affect too much the decision of Juliet about the cinema 
(0.849). 

 
Romeo is now convinced that he has to change his strategy, and now he wants to try inviting 

Juliet on Wednesday, when the weather will be sunny, she should not have to study and she should 
not go out drinking, however she will go out for dinner. 

Now, the input vector is the following: 
 

Rain? Study? Weekend? Drink? Dinner? 
0 0 0 0 1 

 
The neuron response (the output) is then 0.418. Not bad score for the strategy of Romeo, but 

he would be more confident, then Romeo changes and he will ask Juliet to go together to the 
cinema on Wednesday, when the weather will be sunny, she should not have to study, but she will 
go out both drinking and having dinner:  

 
Rain? Study? Weekend? Drink? Dinner? 

0 0 0 1 1 
 
Now, the response of the “Magic Mirror” is 0.999, definitively recognizing the latter as the 

winning strategy.  
However, Romeo is not completely convinced yet, and he wants to try interrogating an 

Artificial Neural Network (or so called “Shallow Neural Network”) with 1 hidden layer with one 
neuron. The input matrix, transfer functions (i.e., logistic activation function is applied in both 
layers) and initialization weights remain the same than before and in figure 47 is presented the 
new model. Notice that even in this case, the network is trained and validated on input sample 
presented in table 4.  



 
G. Falavigna 

 

62 

 
Figure 47. ANN with one hidden layer (1 neuron) – ANN1. 

 
Now, the error decreases (0.023 instead of 0.036), then the model classifies better than the 

previous one.  
Looking at the weights, we have a vector of weights 5x1 (5 variables in the input layer and 1 

neuron in the hidden one) and a single weight between hidden and output layer. In order to find 
the weight for each variable, we need to do the matrix multiplication (table 6). 

 
Weights.1L Weights.2L  Variables W.1L*W.2L 

-0.293   Rain 2.539 
2.838   Study -24.585 
0.615   WE -5.329 
-4.753   Drink 41.172 
-2.800   Dinner 24.253 

 -8.662    
Table 6. Weights for each variable (ANN with one hidden layer and one neuron, ANN1). 

The size of weights is higher, but considerations are not changed. This means that probably 
the responses of Perceptron on previous strategies are confirmed. Table 7 shows results that 
effectively are in line with those obtained with one neuron.  

 

Strategy Rain? Study? Weekend? Drink? Dinner? 
ANN1 
output 

1 0 1 1 0 0 0.006 
2 0 0 0 0 1 0.258 
3 0 0 0 1 1 0.968 
Table 7. ANN responses to three Romeo’s strategies and ANN with 1 hidden layer and 1 neuron (ANN1). 

Romeo is definitively enjoying himself in defining Artificial Neural Networks and he decides 
to increase the number of neurons in the hidden layer. The new architecture of the network is 
presented in figure 48. 
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Figure 48. ANN with one hidden layer (2 neurons) – ANN2. 

The error is increased, then the previous model (i.e., ANN1: 1 hidden layer with 1 neuron) 
outperforms this one (i.e., ANN2: 1 hidden layer with 2 neurons). 

Looking at the weights, we can observe that each input is linked to each neuron in the hidden 
layer, then, we have a matrix of weights 5x2 (5 variables in the input layer and 2 neurons in the 
hidden one) and a vector of weights 2x1 between the hidden and output layer (i.e. 2 neurons in 
the hidden layer and 1 in the output one). In order to find the weight for each variable, we need 
to do the matrix multiplication (table 8). 

 
Weights.1L Weights.2L  Variables W.1L*W.2L Weights1L.1 Weights1L.2  

-0.337 -2.198 -5.462  Rain 12.580 
4.517 1.094 -4.886  Study -30.013 
-1.135 3.269   WE -9.775 
-3.808 -3.629   Drink 38.531 
-3.217 -1.859   Dinner 26.657 

Table 8. Weights for each variable (ANN with one hidden layer and two neurons, ANN2). 

Even in this case, the size of weights is higher, but considerations do not change. 
The responses of the interrogation of Romeo are then presented in following table (table 9):  
 

Strategy Rain? Study? Weekend? Drink? Dinner? 
ANN2 
output 

1 0 1 1 0 0 0.000 
2 0 0 0 0 1 0.642 
3 0 0 0 1 1 0.922 

Table 9. ANN responses to three Romeo’s strategies for the ANN with 1 hidden layer and 2 neurons (ANN2). 

Romeo is now satisfied and on the strengths of previous considerations he sends a WhatsApp 
message to Juliet following the third strategy.  
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Unfortunately, we do not know if Juliet really accepted the Romeo invitation, but we can still 
make some considerations on weights.  

Indeed, until now operations made on weights allow us to understand which input affects the 
more the response of the ANN and the “direction” of this influence. However, we are not able to 
compare the weights of input-variables with each other.  

In the following section, we present the Garson index methodology, that allows to evaluate 
weight of each input variable in percentage terms.  

5.2 The power of weights: the Garson index 

In this section, we present a simple method for transforming ANN weights into percentage 
values. Literature suggests other methodologies, but Garson indexes are simple to calculate and 
powerful (Garson, 1991; Olden & Jackson, 2002). In literature, Garson indexes have been widely 
applied; see, for instance, Falavigna (2012), Casagranda et al. (2016), Ippoliti et al. (2021), 
Falavigna (2008c). 

Let i input variables (where i = 1, ..., I), j hidden nodes (where j = 1, ..., J) and k output neurons 
(where k = 1, ..., K), matrixes are signed with capital letters and their elements with minuscule 
ones; Garson index is a vector made by: 

 

𝐺𝐺𝑖𝑖𝑖𝑖 =
𝑊𝑊𝑖𝑖𝑖𝑖

∗

𝑍𝑍𝑘𝑘
∙ 100 

where: 
 

𝑊𝑊𝑖𝑖𝑖𝑖
∗ =

�𝑊𝑊𝑖𝑖𝑖𝑖�
𝑆𝑆𝑗𝑗

∙ �𝑊𝑊𝑗𝑗𝑗𝑗� 

𝑆𝑆𝑗𝑗 = ��𝑤𝑤𝑖𝑖𝑖𝑖�
𝐼𝐼

𝑖𝑖=1

 

𝑍𝑍𝑘𝑘 = �𝑤𝑤𝑖𝑖𝑖𝑖∗
𝐼𝐼

𝑖𝑖=1

 

 
We show the calculus for the more complex model presented (i.e., the two-layer ANN, ANN2), 

for the other two architectures (i.e., the Perceptron and the ANN1) the procedure is the same: 
Looking at table 8, let us start in calculating the absolute value of each element of the first 

weight matrix (W.1L) and the Sj values that are the sum of each column:  
 

 |Weights.1L| 
 |Weights1L.1| |Weights1L.2| 
 0.337 2.198 
 4.517 1.094 
 1.135 3.269 
 3.808 3.629 
 3.217 1.859 

Sj 13.014 12.049 
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Now, we calculate the first factor (i.e., �𝑊𝑊𝑖𝑖𝑖𝑖�
𝑆𝑆𝑗𝑗

) of matrix 𝑊𝑊𝑖𝑖𝑖𝑖
∗  as follows: 

 
 Weights.1L   |Weights1L.1|/S1 |Weights1L.2|/S2  |Weights1L.1| |Weights1L.2|   
 0.337/13.014 2.198/12.049   0.026 0.182 
 4.517/13.014 1.094/12.049   0.347 0.091 
 1.135/13.014 3.269/12.049   0.087 0.271 
 3.808/13.014 3.629/12.049   0.293 0.301 
 3.217/13.014 1.859/12.049   0.247 0.154 

Sj 13.014 12.049     
 

We proceed multiplying the obtained matrix with the vector of weights between hidden and 
output layers (i.e., �𝑊𝑊𝑗𝑗𝑗𝑗�), after having calculating the absolute value of each element. The result 
is the following vector: 

 
�𝑾𝑾𝒊𝒊𝒊𝒊� 𝑺𝑺𝒋𝒋�    

�𝑾𝑾𝒋𝒋𝒋𝒋� =|Weights.2L| 
    

𝑾𝑾𝒊𝒊𝒊𝒊
∗  

|Weights1L.1|/S1 |Weights1L.2|/S2       
0.026 0.182   5.462     1.033 
0.347 0.091   4.886     2.339 
0.087 0.271        1.802 
0.293 0.301        3.070 
0.247 0.154        2.104 

        𝒁𝒁𝒌𝒌 10.348 
 

In addition, we have made the sum of column (i.e., 𝑍𝑍𝑘𝑘). Finally, we are ready for calculating 

Garson indexes dividing each value with the result in the last row (i.e., 𝑊𝑊𝑖𝑖𝑖𝑖
∗

𝑍𝑍𝑘𝑘
∙ 100). 

 

Garson Index Garson Index (%) 

0.100 10.0% 
0.226 22.6% 
0.174 17.4% 
0.297 29.7% 
0.203 20.3% 

 
Now, we can calculate the Garson indexes to the three models defined by Romeo, results are 

presented in columns (2), (3), and (4) of the following table (table 10): 
 

(1) (2) (3) (4) (5) 
Variables Perceptron ANN1 ANN2 Sign 

Rain 4.38% 2.59% 10.0% + 
Study 24.50% 25.12% 22.6% - 
WE 6.17% 5.44% 17.4% - 

Drink 39.81% 42.07% 29.7% + 
Dinner 25.14% 24.78% 20.3% + 

Table 10. Garson Indexes. 
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Results on Garson indexes confirm that the biggest role in defining the ANN network is played 
by the variable Drink, followed by Dinner and Study. However, the Garson index alone does not 
reveal if variables affect results in a positive or negative manner.  

Concluding, the Garson indexes and the analysis on weights obtained in previous section 
(column (5) in blue in table 10) have to be studied together if we want investigating the 
determinants of the target.  

6 Basic architectures of Deep Learning 

In this section we present the main topologies of Artificial Neural Networks, that are the 
fundamentals of Deep Learning models.11  

Thanks to the increasing computational power, the number of architectures proposed by 
researchers increased, together with their complexity. As said before, Deep Learning and, more 
in general, Machine Learning are more flexible than standard statistical and econometric 
techniques, then, the possibility to build hybrid methodologies is very high. In this manner, it is 
possible to exploit the advantages of all techniques and, at the same time, to cover their 
weaknesses.  

The following section represents a short review of main ANN basic frameworks and it is not 
comprehensive of all existent models, but it recalls those well-known and applied in the majority 
of applications.  

Before starting with the review, it is necessary to explain better two word-pairs regarding 
neural networks: 

 
1. Static vs Dynamic: the difference is based on inputs. If time-series are used as inputs, the 

neural network is called “Dynamic”; otherwise it is “Static”. When the NN is dynamic, it is 
said “with memory”. 

2. Feed-forward vs Back-ward/Recurrent: the difference is based on connections. If neural 
network presents connections travelling from left to right without going back, the ANN is 
called “Feed-forward”, otherwise it is “Back-ward/Recurrent”.  

 
This means that we can find Static Feed-forward or Static Recurrent NN, and Dynamic Feed-

forward or Dynamic Recurrent NN. 

6.1 Cascade Forward Networks 

This architecture is very similar to supervised feed-forward networks. The difference is that in 
this topology are included weight connections from input layers to each layer, and from each layer 
to successive ones. In figure 49 red and green arrows show the difference from the simple feed-
forward neural network. Indeed, neurons of the input layer are connected not only with neurons 
of the first hidden layer but also with the second hidden layer and with the output one (red arrows). 

                                                      
11 All examples presented in this section have been run with Matlab R2019b, Deep Learning Toolbox. 
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At the same time, also neurons of the first hidden layer are connected not only with the following 
layer, but also directly with the output one (green arrows).  

 

 
Figure 49. Cascade Forward Network topology. 

 
In general, the Cascade Forward neural networks are used for any kind of mapping.  

6.2 Radial Basis Function (RBF) 

The Radial Basis Function is a supervised feed-forward neural network with only one hidden 
layer (i.e., two-layer NN: one hidden layer and one output layer), but it presents predefined 
activation functions.  

Between the input layer and the hidden one, the ANN presents a gaussian transfer function 
(i.e., radial basis function); from the hidden to the output 
layer, the network presents a linear transfer function. 

Let us consider a neuron k, it is equal to:  

𝑦𝑦𝑘𝑘(𝑥𝑥) = �𝑤𝑤𝑘𝑘𝑘𝑘𝜙𝜙𝑗𝑗(𝑥𝑥) + 𝑤𝑤𝑘𝑘0

𝑀𝑀

1=1

 

 
However, the difference between RBF and a two-layer ANN is the argument of the function 

𝜙𝜙. Indeed, the x in this case is a measure of distance12 between the input vector and vectors formed 
from the rows of the input weight matrix. Figure 50 shows the RBF topology: 

 
Figure 50. Radial Basis Function topology (RBF). 

                                                      
12 In Appendix A, a short review of main distance measure is provided. 

Radial basis function: 

𝜙𝜙(𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) = 𝑒𝑒−𝑥𝑥
2

 
Linear function: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 
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The ||dist|| can be measured with different distances, but the more frequently used is the 
Euclidean one. However, all distance measures, well known in clustering analysis, can be here 
used. 

But… what is the difference in practice? 
The answer is represented in figure 51 where pictures (a) and (b) show respectively how feed-

forward neural network and radial basis function work. The former classifies observations through 
hyperplane intersections, the latter exploits distance measure for grouping observations in 
clusters. 

 

 
(a)                                                (b) 

Figure 51. FFNN and RBF in comparison.  

 
The RBF neural networks are used moreover for interpolations or in forecasting in time series; 

indeed, they are successfully applied in weather forecasting. 
From the RBF family, two topologies of NN deserve attention: the Generalized Regression 

Neural Network (GRNN) for forecasting and Probabilistic Neural Network (PNN) for 
classification.  

6.2.1 Generalized Regression Neural Network (GRNN) 

The GRNNs are a specification of RBF where the transfer function between the hidden layer 
and the output one is slightly different from the linear one. This type of ANNs is used in 
forecasting and in general in function approximation.  

Let us consider n as the dot product of a row of weight vector 
(between hidden and output layer) and the input vector from 
hidden layer (xh), all normalized by the sum of the elements of xh.  

Figure 52 shows the topology of GRNN where the argument of the linear transfer function 
between hidden and output layer is the n measure. 

 

Linear function: 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 
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Figure 52. Generalized Regression Neural Network topology (GRNN). 

6.2.2 Probabilistic Neural Network (PNN) 

The PNN, such as the GRNN, differs from the Radial Basis Functions by the second transfer 
function. In this case, the input from the hidden layer became the argument of a competitive 
function, that assigns 1 to the maximum value presented. When a new input is presented, the first 
layer computes distances from the input vector to the training input vectors and produces a vector 
whose elements indicate how close the input is to a training input. In this layer, a measure of 
similarity between the new input and the training inputs is measured. 

The second layer sums these contributions for each class of inputs to produce as its net output 
a vector of probabilities. Now, a competitive transfer function in the output layer picks the 
maximum of these probabilities, and produces a 1 for that class and a 0 for the other classes. 
Before the computation of competitive function, the probabilities can be considered as results of 
a membership functions of fuzzy logic methodology, where probabilities represent the probability 
of the input to belong to each output class. In this case, the competitive function allows to choose 
the class of destination (i.e., membership). Figure 53 shows the architecture of PNN that is equal 
to the RBF topology with the exception of the second transfer function.  

In general, PNNs are used in classification problems and the following exercise shows a simple 
example of their working. 

 
Figure 53. Probabilistic Neural Network topology (PNN). 

 
Let us consider three inputs, each of two elements (x1 = [1, 2], x2 = [2, 2], and x3 = [1, 1]), and 

one target (y = [1, 2, 3]). Supposing that a new input (out-of-sample) is presented to the PNN (x4 
= [1.7, 0.9]), figure 54 shows training inputs (x1, x2, x3) in blue and the (out-of-sample) new input 
(x4) in red.  

n= w2*xh 



 
G. Falavigna 

 

70 

 

 
Figure 54. Classification problem on the Cartesian coordinate system. 

 
The PNN calculates the probability of each input to belong to a class. Notice that the ANN 

knows that x1 belongs to class 1 (target = 1), x2 belongs to class 2 (target = 2), and finally x3 
belongs to class 3 (target = 3). When x4 is presented as a new input, the PNN does not know the 
class for this element, so the NN calculates the probabilities that x4 belongs to class 1, class 2, and 
class 3. Through the competitive transfer function, the output neuron transforms the obtained 
probabilities, assigning 1 to the class with the highest probability value. In this simple example, 
the results are 0 for both classes 1 and 2, and 1 for the third class. It is then clear that PNN assigns 
class 3 to the new input, as shown in figure 55.  

Thanks to this exercise, we have shown why PNNs are applied with success in classification 
problem: their high ability to assign patterns to their correct class.  

 

 
Figure 55. Assignment of x4 to class 3 through PNN. 
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6.3 Back-ward/Recurrent Network 

Are called Recurrent Networks all architectures where connections between layers are not only 
feed-forward, but also back-ward (in red in figure 56).  

 

 
Figure 56. Recurrent Network topology. 

 
These typologies of ANN can learn sequential or time-varying patterns. Even if they can 

require more computational power, the weights allow to consider two effects: 
• Direct effect: a change in the weight causes an immediate change in the output. In figure 56, 

these feed-forward connections are black arrows (in purple for the bias). 
• Indirect effect: some of the inputs to the layer are also functions of the weights. In this 

architecture, connections can come back and they are called back-ward, presented with red 
arrows in figure 56. 
 

The back-propagation algorithm used for updating weights is the same for both typologies of 
connections. However, when the effect is indirect, the algorithm is called “dynamic back-
propagation”.  

They are applied in many fields: prediction in financial markets, channel equalization in 
communication systems, phase detection in power systems, sorting, fault detection, speech 
recognition, and so on… Nevertheless, when back-ward connections are provided, the complexity 
of NN increases, such as the computational requirements. In addition, it is not always simple to 
understand what happen in hidden layers, moreover if there are more than one layer with more 
neurons.  

With that in mind, back-ward connections are often used and they can be applied with 
satisfying results.  

6.3.1 Nonlinear Autoregressive Network (NARX) 

One of the most interesting architecture of Recurrent networks are the NARX models. They 
are Nonlinear supervised AutoRegressive network with eXogenous inputs, then they are recurrent 
and dynamic. Indeed, they present feed-forward and back-ward connections (from now “feedback 
connections”) enclosing several layers of the network.  

The peculiarity of this architecture is that it is not only recurrent but it is also dynamic. This 
last adjective means that ANN learns from previous values of inputs and/or outputs.  
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This model is based on the linear ARX13 model used in time-series, and the output can be 
defined as follows (Beale et al., 2019):  

 
y(t) = f (y(t − 1), y(t − 2), …, y(t − ny), u(t − 1), u(t − 2), …, u(t − nu)) 

 
where the next value of y(t) is regressed on previous values of the output and previous values 

of an independent (exogenous) input signal u(t). 
A simplified architecture of a NARX NN with one exogenous input (ut), one output and three 

feed-forward hidden layers is presented in figure 57. 
 

 
Figure 57. Simplified representation of a NARX model with one exogenous input,  

one output and three feed-forward hidden layers. 

 
Notice that this architecture sums together non-linearity (this depends from activation 

functions used), memory (time-series are used as inputs), and feed-back connections (feed-
forward connections in the hidden model and back-ward from output to input for computing the 
unit delay). 

6.3.2 Long Short-Term Memory Neural Networks (LSTM) 

The LSTM neural networks deserve a special attention. These topologies are composed by one 
or two LSTM layers that are recurrent networks for time-series analysis. The architecture of a 
LSTM layer is not simple because considers together time-series and features. 

Let us consider a time-series X with CS features (called channels), figure 58 shows the LSTM 
layers, where ht represents the output (also called hidden state) and ct identifies the cell state at 
time t. 

                                                      
13 The ARX model can be linear or non-linear and they refer to AutoRegressive with eXogenous variables. 
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Figure 58. LSTM layer flow. 

 
At the first-time step, final output and updated cell state are calculated considering the initial 

state of the network in the first LSTM block.  
At time t, ct-1 and ht–1 together with the next step of the sequence are used for calculating the 

output and ct (i.e., the updated cell state).  
The output or hidden state and the cell state compose the state of the LSTM layer. At time t 

the output state contains the output at step t from the corresponding LSTM block. Information 
learned in previous time step is collected in cell state. The information is learned and updated 
step-by-step through gates, as shown in figure 59 (Beale et al., 2019).  

In figure 59, f1 is the forget gate that controls the reset state of cell; f2 represents the cell 
candidate that adds information to the cell state; f3 represents the input gate that controls the state 
update of cell; finally, f4 is the output gate that controls the cell level added to the hidden state. 
All gates are not linear: logistic or sigmoidal functions are applied.  

 
Figure 59. Gates in LSTM layer. How they forget, update, and produce cell and hidden states. 
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These networks are often used in Deep Learning framework because they are effective in 
classification and regression. 

In general, for classification LSTM NN are used before a fully connected layer (as in 
convolutional networks) and a softmax function; whereas for regression, the output is obtained 
directly after the fully connected layer.  

An application field is the text mining, where NNs are able to classify different sentences into 
different classes.  

6.4 Competitive Networks  

Competitive networks are neural networks made by only one layer of competitive neurons. 
They are, together with the Self-Organizing Map (SOM), the only neural networks with 
unsupervised learning process, that is to say that in the training set, the pre-assigned values (i.e., 
the targets) are not introduced in the model (figure 60).  

The competitive learning rule works following three main steps (Haykin, 1999): 
 

1. The only layer is made by neurons equal among them, but weights are randomly initialized, 
so they can give different responses to the same input patterns. 

2. The neuron whose weight vector is closest to the input vector is updated to be even closer. In 
this manner, when a new similar input pattern will be presented to the network, this neuron 
will win the competition among the other neurons, and from now it will be called “winner-
take-all neuron”. 

3. As more and more inputs are presented, each neuron in the layer closest to a group of input 
vectors soon adjusts its weight vector toward those input vectors.  

 
Through this process, the competitive network categorizes the input vectors presented, and its 

main application is the cluster analysis. Indeed, the Self Organizing Maps (SOM) are based on a 
competitive layer and, for his reason, they are the ANNs more frequently applied in clustering 
problem.  

 

 
Figure 60. Competitive Network topology. 

6.4.1 Self-Organizing Map (SOM) 

Self-Organizing Maps are unsupervised and competitive neural networks proposed for the first 
time by Tuevo Kohonen in 1982. They are inspired by the brain’s cortex where neighbouring 
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neurons are activated by similar stimuli. In details, this ANN topology considers the reciprocal 
influence of neurons: neurons close to active neurons strengthen the links; neurons who are far 
are weakened. 

The SOM network is composed by one input layer and one output one that is represented by a 
grid which competitive neurons are placed on, as presented in figure 61. As in previous 
architecture, each input is associated via connection weights to all neurons of the output layer.  
 

 
Figure 61. Self-Organizing Map (SOM) topology. 

 
As for competitive NNs, the competitive layer considers the distance between weights and 

inputs, while the competitive transfer function returns 0 for each neuron except for the winner 
(i.e., “winning neuron”) that keeps 1. In this manner, it is associated to the most positive element 
of net input. 

SOMs allow not only to recognize the distribution of inputs they are trained on (as the 
competitive layer), but also their topology. 

The Self-Organized Feature Map (SOFM) are similar to SOMs, but the algorithm starts with 
a pre-assigned grid of inputs topology.   

When many inputs are presented, the network returns good results in clustering inputs, as in 
the example of man learning to drive: learning by trying and trying again… 

Let us consider to group 1,000 subjects on the base of two variables (input 1 and input 2)14. 
We start defining a topology 8x6, then in output layer we find 48 neurons (figure 62). 

                                                      
14 The sample used is the “simplecluster_dataset”, provided in Matlab R2019b. 
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Figure 62. Self-Organizing Feature Map (SOFM) output layer. 

 
The training phase is composed by three steps:  
 

1. The inputs are presented one at time. 
2. After the winning neuron is identified, weights of winning neuron and its neighbours are 

approached to input vector. 
3. Weights of winning neuron are updated proportionally and weights of neighbours change on 

the base of half of the leaning rule. 
 

Figure 63 (a) represents the 48 neurons (blue hexagons), regions among neurons containing 
the weights (red line). Colours of regions represent the distance size (i.e., darker the colour, larger 
the distance).  

  
(a)                                                                                        (b) 

Figure 63. Neighbours’ weights among 48 neurons in output layer. 

From the representation (a), the ANN grouped inputs into 4 clusters, and in figure 63 (b), the 
number of elements grouped for each neuron is provided. 

Considering the high capability of SOM and SOFM in clustering, they are often used in pre-
processing analysis for reducing the size of input layer.  
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6.5 Learning Vector Quantization (LVQ) 

The Learning Vector Quantization network is a supervised ANN with a first competitive layer 
and an output linear layer. The competitive layer learns to classify input vectors considering a 
competitive function, and the negative distance between weights and inputs. In the first layer, the 
Kohonen learning rule is applied, as used by SO(F)M. 

The output layer is linear and it transforms the competitive layer’s classes into target 
classifications, and for this reason the LVQ networks are almost always used with SO(F)Ms 
(figure 64). 

 
Figure 64. Learning Vector Quantization (LVQ) topology. 

6.6 Hopfield Neural Network 

In 1982 Hopfield proposed a recurrent unsupervised fully connected neural network with a 
symmetric hard-limit function: 

ℎ(𝑥𝑥) = �
1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
−1 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 

As shown in figure 65 (a), the Hopfield is composed by only one layer where each neuron is 
simultaneously input and output. 

 

   
(a)                                                                                   (b) 

Figure 65. Hopfield network topology (a) and learning process (b). 

Considering the activation function, neurons are activated or not and weights are updated using 
a specific “energy” function. Figure 65 (b) shows the network during or after the learning, where 
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only some neurons are activated (in red), whereas two nodes have been switched off (in dark 
grey).  

This topology is very powerful in creation of associative memories, resistant to the alteration 
of operating conditions, and the solution of combinatorial optimization problems. A strength of 
Hopfield networks is moreover the ability to recognize an image even when it is not exact. Let us 
consider an erased written (figure 66 (a)), a Hopfield network well trained is able to recognize 
and complete the written (figure 66 (b)).  

(a)   (b) 

Figure 66. Hopfield recognizing output. 

A generalization of Hopfield neural networks is the Boltzmann Machine  ̧ proposed by 
Ackley, Hinton and Sjnowski in 1985. They substituted the deterministic neurons of Hopfield 
networks with probabilistic ones. In this manner, new networks are characterized by a probability 
distribution of states where neurons with higher energy present a lower probability of those with 
lower energy. The probability to find the network in a specific case is represented by the well-
known in thermodynamics Boltzmann distribution. In general, they are used successfully in image 
recognition.  

6.7 Reservoir Computing 

With Reservoir Computing we refer to a set of methodologies for training recurrent and 
dynamic supervised neural networks (for instance: Echo State Networks, Liquid State Machines, 
Back-propagation algorithm decorrelation, and so on…).  

Figure 67 shows a simple topology of a Reservoir Computing ANN. We can observe that there 
are two different types of connections: feed-forward (in red) and recurrent (in purple). Then, the 
essential idea is training the network considering separately the two phases:  

1. The reservoir, that is the recurring part of the network.
2. The readout, that is the non-recurring part (feed-forward) of the network.

Figure 67. Reservoir Computing NN. 
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When the first phase has been fixed generating randomly the internal connections, the readout 
is trained through a linear regression. 

This topology is used successfully in time-series analysis, and the architecture can be very 
complex.   

6.8 Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNN) are complex architectures based on a convolution 
layer. In mathematics, the convolution is an operation that produces a function (z) expressing how 
the shape of a function (f) is modified by another one (g). The term “convolution” refers both to 
the function result and to the process for obtaining it.  

CNNs are composed by many convolutional hidden layers, then they are a Deep Learning 
model. More frequently used layers refer mainly to the following three types: 

1. A Convolution process inputs with some convolutional filters, each of which activates certain
features from the analysed inputs.

2. A Rectified Linear Unit activation function (i.e., ReLU), that allows to activate only
significant features to submit to the next layer.

3. A Pooling phase simplifies the output by performing a non-linear downsampling, reducing
the number of parameters that the network must learn.

After learning in the “convolutional phase”, the selected features are passed to a fully 
connected layer for the classification. 

These complex architectures are used with 
success in image detection, indeed they are 
inspired to the human visual cortex.  

As shown in figure 68, the first layer (i.e., 
convolutional layer) applies a convolution on 
inputs and then produces an output. In this layer, a 
ReLU and a pooling phase15 act in order to reduce 
the number of parameters. 

The obtained outputs are the net-inputs of a second fully connected layer, that works as a 
supervised recurrent network where the activation function is represented by a Support Vector 
Machine16 or by a softmax function.  

15 This is a characteristic layer of convolutional network. In this phase, a kernel function is applied for dimensionality 
reduction. Two kernel functions are the most commonly used: the max pooling and the average pooling. In this layer, 
all information collected in the features is compressed.  
16 For a simple explanation of SVM, see section 3.4. 

ReLU function: returns 0 if the 
argument is negative, otherwise it 
returns the maximum value of the 
function. 
Softmax function:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
𝑒𝑒𝑥𝑥

∑𝑒𝑒𝑥𝑥
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Figure 68. Convolutional Neural Network (CNN) topology. 

7 Final considerations 

In this paragraph we sum up conclusions about Deep Learning methodologies and Artificial 
Neural Networks. In a first sub-section, we list and discuss the phases of methodologies’ 
definition, while in the final sub-section a debate on strengths and weaknesses of these models is 
proposed.  

7.1 Steps for ANN model definition: the choice of correct parameters 

The first step in defining an ANN model is identifying correctly the problem and its 
formulation. In particular, in this phase it is necessary to clarify the relation of cause-effect in 
order to exclude reverse causality problem (step 0). Once identified the problem, we can pass to 
design the model and then to choose the network architecture and all parameters (step 1). After 
the training and the validation of the ANN (step 2), we can test the model (step 3). Now, if we are 
satisfied, we can continue including the identified model in an algorithm or in another software, 
and, at the same time, we proceed updating all parameters (step 4); otherwise, we have to restart 
with the step 1 (or step 0 if data are not convincing), as shown in figure 69 (Basheer & Hajmeer, 
2000). 

First two phases (step 0 and step 1) are the most critical because the goodness of data is 
essential in order to have good results, and, at the same time, results depend also from model 
parameters.  

In step 0, before dividing data in training and validation set, they have to be analyzed and 
preprocessed. Databases too big can confuse the ANN, but an initial sample too small can 
compromise the generalization ability of network (see section 4.5.1 for a discussion on overfitting 
and underfitting topics). There is not a rule for defining the size of the dataset, the only solution 
is evaluating the accuracy after the validation/testing step. Looking at, for instance, the case of 
classification of a dataset in three classes. The starting sample must represent well all three classes 
and elements of each class have to be controlled for removing outliers17.  

17 In statistics, the outliers are values significantly different from other observations of the database. 
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Figure 69. ANN developing steps. 

In addition, a very relevant issue is to reduce the number of features to only those really 
determinant. This is a fundamental point because the ability of ANN to classify or generalize 
depends from the quality of information stored in the initial sample. In this sense, the input dataset 
can be treated with the Principal Component Analysis (PCA) or with the Support Vector 
Machines (SVM). The PCA is a statistical technique commonly used for identifying the 
component(s) more crucial of a dataset. Considering, for instance, a town where the majority of 
shops is concentrated in a single street and its crossroads. Obiovously, some shops exist also in 
other areas, but if we want to have shopping, we have to go in the main street (figure 70). 
Nevertheless, we have never been to this town, and therefore we do not know where the street is, 
we only know the GPS coordinates of the shops.  

Figure 70. Map of shops in the town. 

How searching the shopping street? 
We can start placing the origin of a coordinate system on the mean of shops’ coordinates (step 

1, figure 71 (a)), and after we can rotating the axes minimizing the distance of shops from the x-
axis (step 2, figure 71 (b)). Now, the new direction is the direction along which the dispersion of 
the data is the greatest (see the dashed lines in figure 71 (b)). This is called first principal 
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component. We can continue rotating for searching the second principal component, and we can 
carry on until the y became very small for each shop. 

 

 
(a)                                                                                (b) 

Figure 71. Searching the correct component. 

 
This example, inspired to Domingos (2015), is very simple but it explains better as principal 

component analysis works.  
Support Vector Machines (SVM) work defining vectors on boundaires among different groups 

of data, as explained in section 3.4.  
Another preprocessing step, always strongly recommended, is the normalization of data 

between 0 and 1 or -1 and +1. A standard formula applied for normalizing the variable xi into a 
predefined range [𝜉𝜉1,, 𝜉𝜉2] is the following: 

𝑧𝑧𝑖𝑖 = 𝜉𝜉1 + (𝜉𝜉2 − 𝜉𝜉1)�
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖

𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� 

Where zi is the normalized value of xi and 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are its minimum and maximum 
values.  

Last but not least, it is a good practice removing inputs/targets that are constant. 
 
Once having pre-processed data, we can start with next step (i.e., step 1) that is the most 

interesting. Indeed, it is here that we have to set the ANN architecture and its parameters. In 
particular, we face with the following decisions: 

 
1. Initialization of ANN weights. As discussed in previous sections, weights are initialized and, 

as shown in section 4.4.4, they can affect the probability to find a local or global minimum 
or, more generally, they can affect ANN results and performance. A general rule is that 
weights are initialized uniformly in a small range with zero-mean random numbers 
(Rumelhart et al. 1986). 

2. Learning rate (ƞ) of back-propagation algorithm. A high learning rate accelerates the training 
and weight vector (or matrix) changes significantly from one epoch to another. This allows 
that the ANN difficultly will find the convergence and the error will continue to oscillate. On 
the contrary, a small learning rate will find the global minimum, but in a very slow way. A 
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methodology to adopt is to apply an adaptive learning rate, varying along the training. In this 
manner the optimal weight vector (or matrix) will be easily find. 

3. Activation or Transfer function. The function transforms the weighted sum of signals in a 
neuron. The majority of applications adopt the non-linear and differentiable sigmoid function, 
because its properties are essential requirements for back-propagation algorithm. However, 
there is not a specific rule, besides the type of problem to solve (i.e., for instance, classification 
or forecasting).  

4. Early stopping criterion. In section 4.4.3, we have discussed about the possibility to stop the 
network when performance of ANN on validation diverges from results on training. The 
criterion used for measuring performance can be defined by the ANN designer, but in general 
it is used the Sum-of-Squared-Errors (SSE): 

𝑆𝑆𝑆𝑆𝑆𝑆 = ��(𝑡𝑡𝑝𝑝𝑝𝑝 − 𝑜𝑜𝑝𝑝𝑝𝑝)2
𝑀𝑀

𝑖𝑖=1

𝑁𝑁

𝑝𝑝=1

 

where N is the number of the training sample, M is the number of output nodes, t are the 
targets and o are the outputs of the ANN.  
It is noteworthy that the choice of the metric adopted depends also from the problem to solve.  

5. Number of epochs. In this case, the criterion is 
empirical. Indeed, when the error starts to increase, it 
is necessary to stop the back-propagation algorithm 
and set the number of epochs at this time.  

6. Incremental or Batch training. This choice has been discussed in section 4.4.2.3. In general, 
batch training is used in recurrent and/or dynamic networks, but this mode is more likely to 
be entrapped into a local minimum. Even in this case, the advice is to choose the mode 
empirically. 

7. The size of hidden layer. Literature suggests that only one hidden layer is sufficient for 
approximating any type of function (Hornik et al., 1989). However, if the function shows 
discontinuity, it is recommended to increase the number of hidden layers (i.e., two at least). 
The number of nodes in hidden layers is strictly related to the complexity of patterns presented 
to the ANN. However, increasing the number of nodes means also increasing the time 
necessary for computation. As suggested by Basheer & Hajmeer (2000), figure 72 represents 
what happens when too few or too many hidden nodes are defined into the hidden layer(s). 
Considering a simple problem where y is a function of x; in figure 72 are represented training 
and validation points (light-blue dots for training and stars in water green for validation). The 
dash-dot line in pink represents the generalization of a network with too few nodes in the 
hidden layer(s), whereas the dashed line in purple shows the performance when too many 
hidden nodes are defined. The blue curve is the result of network when the optimal number 
of hidden nodes is set up.  
 

Unfortunately, there is not a mathematical rule for establishing an a-priori number of hidden 
nodes, but we can only proceed with trials and errors. For our knowledge, many authors try to 
suggest some formula, as for instance the following two simple rules: 

For instance, Masters (1994) indicates that the number of hidden nodes has to be equal to: 
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)1/2. Hecht-Nielsen (1990), following the 

Remember that one pass through 
all weights for the whole training 
set is called epoch of training. 
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Kolgomorov theorem, suggests a number of hidden nodes lower or equal to the number of inputs 
+1. 

However, researchers converge on the idea that the optimal solution can be found only 
empirically, that is to say trying and re-trying.  

 

 
Figure 72. Size of hidden layer(s) and network performance. 

7.2 Advantages and Disadvantages 

Now, we have therefore arrived at the end of the handbook and it is time to take stock about 
Deep Learning, in particular about Artificial Neural Networks.  

 
Strengths of ANNs can be reassumed in the following list: 

• Information is stored not in the initial database, but in all nodes of all layers of ANN. For this 
reason, if pieces of information are lost, the ANN continues working. ANNs are not sensitive 
to information losses. 

• After the training, the ANN is able to assign an output also if incomplete information is 
presented as input and without losing in performance. Then, ANN is able to work also with 
incomplete information. 

• If a part of network does not work, the ANN is able the same to generate output without 
errors. The ANN is fault tolerant. 

• ANN define properties of patterns in each layer. Then, ANNs perform very well feature 
extraction. 

• ANNs are useful in designing non-linear relations. 
• ANNs require neither specific data distribution nor model hypotheses. 
• ANN, for all reasons explained in the handbook, are very flexible tools.  
• Thanks to layers, ANNs study data at a bigger extraction level in comparison with Machine 

Learning techniques. 
• Finally, considering Machine Learning and Deep Learning, Aggarwal (2018) suggests that 

the accuracy of results from Deep Learning models increases with the increasing of the 



 
Deep Learning for Beginners 

 

 85 

amount of data, as shown in figure 73. On the contrary, growing the size of input data, the 
accuracy of Machine Learning techniques decreases.  
 

 
Figure 73. Accuracy and data: Deep Learning vs Machine Learning. 

 
Nevertheless, also Artificial Neural Networks and then Deep Learning present weaknesses. In 

particular, we can list them as follows: 
• ANNs and even more Deep Learning require high computational power. They are dependent 

from hardware equipment. 
• What happens in hidden layers is not always clear because in complex architectures it is 

difficult to identify all mathematical results in hidden nodes. For this reason, ANNs are often 
considered black-boxes. 

• ANNs can suffer of overfitting and/or underfitting, that we discussed in section 4.4.3; 
• The size of initial data is determinant for ANN successful results. The training sample has to 

be representative of reality, so that ANN is able to learn correctly all characteristics of data. 
ANN results depend from the size (and quality) of training data.  

8 Appendix A: Distance measures 

Euclidean distance 
Let us consider two variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 

 
We can define their distance as follows (Danielsson, 1980): 
 

𝐷𝐷𝐸𝐸(𝑋𝑋,𝑌𝑌) = ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1
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Minkowski distance 
Let us consider two variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 

 
We can define their distance as follows (Ichino & Yaguchi, 1994): 

𝐷𝐷𝑀𝑀(𝑋𝑋,𝑌𝑌) = ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑟𝑟
𝑚𝑚

𝑖𝑖=1

𝑟𝑟

 

 
where r is a parameter that can assume the following values: 
• r=1: Manhattan distance; 
• r=2: Euclidean distance; 
• r → +∞: when the distance between vectors is maximum.  
 
Lagrange-Tchebychev distance 
Let us consider two variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 

 
We can define their distance as follows (Rajola, 2003): 
 

𝐷𝐷𝐿𝐿𝐿𝐿(𝑋𝑋,𝑌𝑌) = max
1≤𝑖𝑖≤+∞

|𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖| 

 
Mahalanobis distance 
Let us consider two variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 

 
We can define their distance as follows (Penny, 1996): 
 

𝐷𝐷𝑀𝑀𝑀𝑀ℎ(𝑋𝑋,𝑌𝑌) = �(𝑋𝑋 − 𝑌𝑌) ∙ 𝜎𝜎(𝑋𝑋,𝑌𝑌)−1 ∙ (𝑋𝑋 − 𝑌𝑌)𝑇𝑇 
 

where 𝜎𝜎(𝑋𝑋,𝑌𝑌) is the covariance matrix and T is the size of vector when X and Y are multivariate 
variables. 

 
Correlation 
Let us consider two variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 
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The linear correlation coefficient r is equal to the covariance of standardized variables X* and 
Y* (Orsi, 1995). 

Its formulation is the following:  
 

𝑟𝑟 =
𝜎𝜎𝑋𝑋,𝑌𝑌

�𝜎𝜎𝑥𝑥 ∙ 𝜎𝜎𝑦𝑦
 

 
The coefficient r ranges between -1 and +1. Values equal to ±1 represent perfect linear 

dependence. If r = -1, the points are perfectly placed on a line with negative slope and then 
variables are inversely and proportionally correlated; otherwise, if r = +1, points are placed on a 
line with positive slope and then if a variable grows, also the other variable will increase. Finally, 
if r = 0, the variables are not correlated.  

 
Jaccard distance (only for dichotomous variables) 
Let us consider two dichotomous variables X and Y of length m: 
 

X = x1, x2, …, xm  and Y = y1,y2, …, ym 

 
The similarity among them can be measured defining the following quantities:  
• M01 = number of attributes where X has 0 and Y has 1; 
• M10 = number of attributes where X has 1 and Y has 0; 
• M00 = number of attributes where X has 0 and Y has 0; 
• M11 = number of attributes where X has 1 and Y has 1. 
 
The Jaccard index (Jaccard, 1901) can be calculated as follows: 
 

𝐽𝐽 =
𝑀𝑀11

𝑀𝑀01 + 𝑀𝑀10 + 𝑀𝑀11
 

 
As exercise, different distances have been calculated on a database of 10 elements and 3 

variables. The number of distances calculated is (m*(m − 1))/2, then 10*9/2, sorted in increasing 
way and depicted in the figure 7418. 

The Jaccard distance has been excluded because it can be calculated with dichotomous 
variables, while, in this case, we have only continuous items.  

Euclidean, Minkowsky and Lagrange-Tchebychev present similar results, where Mahalanobis 
and Correlation show very different results. This means that the choice of the distance is crucial 
in the analysis. In addition, other metrics exist, as, for instance, the cityblock, the cosine, the 
spearman and the hamming. A deepen explanation on metrics can be found in Berkhin (2006), 
even though the most commonly applied are those presented in this appendix. However, it is 
always possible for the user to define specific metrics.  

                                                      
18 Distances have been calculated with Matlab R2019b. 
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Figure 74. Different distances based on different metrics. 

9 Appendix B: Basic Glossary 

• ACCURACY: the accuracy of a model is measured as the ratio between the correct 
classification and the size of dataset.  

• ACTIVATION FUNCTION: transforms the weighted sum of inputs in a neuron.  
• ARTIFICIAL INTELLIGENCE (AI): represents the theory and development of informatics 

systems aiming at teaching computers to learning how human behave. The final goal is 
building models able to simulate the cognitive capabilities of human brains. 

• ARTIFICIAL NEURAL NETWORK (ANN): is a representation of human neural brain in 
mathematical terms and its main goal is to simulate its functioning process. ANNs are 
composed by neurons and one or more layers.  

• AUC: the Area Under the Curve represents the probability of correct prediction based on 
probabilities estimated by the model. The rule of thumb indicates that: 
• when AUC = 0.50 the model has no discriminatory capacity. 
• when AUC varies between 0.70 and 0.80 the model has an acceptable discriminator 

power. 
• when AUC ranges between 0.80 and 0.90 the model discriminated in an excellent way. 
• when AUC> 0.90 the model has a “super-excellent” discrimination power. This result is 

very difficult to obtain in real applications.  
• BACK-PROPAGATION ALGORITHM: defines the process used by the neuron or network 

for updating weights. 
• BACK-WARD CONNECTION: is a connection that does not travel from left to right, but, 

on the contrary, it goes from right to left.  
• BIAS: is the difference between the prediction of the algorithm and the correct value to 

predict. 
• DEEP LEARNING (DL): is a particular case of feature learning characterized by Artificial 

Neural Networks with two or more layers (often called multi-layers), capable of processing 
information in a non-linear way. 

• DYNAMIC NEURAL NETWORK: is a network where input dataset is represented by time-
series. These ANNs are also said “with memory”.  
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• EARLY STOPPING REGULARIZATION: this rule stops the training of the ANN, when the 
performance on validation set starts to increase. This algorithm allows to avoid the overfitting 
problem.  

• EPOCH OF TRAINING: indicates the number of passes of the entire training dataset 
completed by the ML algorithm. 

• EXPERT SYSTEM: is computer program reproducing the human reasoning, the logic, the 
belief, the opinion, and the experience (Plant & Stone, 1991; Fu, 1995). 

• FEED-FORWARD CONNECTION: is a connection travelling from left to right. 
• F-SCORE: is also known as Sørensen-Dice coefficient or Dice Similarity Coefficient, DSC. 

It represents the accuracy of a model considering the precision and the recall measures. It 
ranges between 0 and 1, where 1 indicates the perfect accuracy of the model tested.  

• GARSON INDEX: defines the percentage of importance of features using ANN weights.  
• GENERALIZATION PHASE: the ANN tests its ability and if it has been able to learn well 

the lesson, it is able to generalize results on similar data. 
• GENERALIZATION: is the ability of an ANN to learn rules from a dataset and to apply 

relations learnt to another unknown set of data.  
• GRADIENT: indicates the direction of greatest growth of a function (of several variables). 
• GRADIENT DESCENT ALGORITHM: is the name of back-propagation algorithm when 

the minimization of the error occurs through steps in opposite direction to the gradient. 
• HIDDEN LAYER: in ANNs, is the layer between input and output layers. In multi-layer 

neural networks, more than one hidden layer exists.  
• INPUT: in ANNs, input sample represents the starting data on which the network is 

trained/validated/tested.  
• LAYER: in ANNs, it represents a collection of neurons, but in simple frameworks, it can also 

consist of just one node. Hidden layers are layers between inputs and output layer, where 
ANN’s weights are calculated and stored. Note that the counting index of layers starts with 
the first hidden layer up to the output layer. Looking at the number of layers, we can 
distinguish between single-layer ANN architecture and multi-layer ANN framework. In 
ANNs, we can find, input layer, hidden layer(s), and output layer. 

• LEARNER: is another way to call a learning algorithm.  
• LEARNING ALGORITHM: represents a set of instructions of Machine Learning allowing a 

computer program to imitate the brain functioning. 
• LEARNING PHASE: in this phase, the ANN learns to recognize rules among patterns and it 

stores them in the weights’ matrixes.  
• LEARNING RATE: defines how smoothly the user shifts the decision boundaries of the 

Perceptron learning rule. 
• LEARNING RULE: is a method applied repeatedly to the ANN with the aim to improve the 

performance of network. There are many learning rules depending from the network’s 
typology.  

• LOGIC GATE OPERATOR: is a model or a device implementing a Boolean function. 
Starting from binary inputs, the model produces a binary output. Considering “true” = 1 and 
“false” = 0, the logic gate operators are (table 11): 
o AND: The output is true when both inputs are true. Otherwise, the output is false. 
o OR: The output is true if at least one operand is true. False if both are false. 



 
G. Falavigna 

 

90 

o XOR: The output is true if both operands are different. False if both are true or false. 
o NAND: The output is false if both operands are true. True otherwise. 
o NOR: The output is true if both inputs are false. Otherwise, the output is false. 
o XNOR: The output is true if the inputs are the same, and false if the inputs are different. 
o NOT (special case): This operator works with only one input. If the input is 1, then the 

output is 0. If the input is 0, then the output is 1.   
 

Input Output 

A B AND OR XOR NAND NOR XNOR 
NOT  

(only input A) 
0 0 0 0 0 1 1 1 1 
0 1 0 1 1 1 0 0 1 
1 0 0 1 1 1 0 0 0 
1 1 1 1 0 0 0 1 0 

Table 11. Logic Gate operator outputs. 

 
• MACHINE LEARNING (ML): is a “field of study that gives computers the ability to learn 

with-out being explicitly programmed” (Samuel, 1959). The main goal is to build AI 
programs able to automatically define other programs for interpreting data and predicting 
results. 

• MEAN SQUARED ERROR (MSE): is used for evaluating the performance of an algorithm. 
It is calculated as the mean squared error loss between target values and model predictions. 

• MULTY-LAYER FEED-FORWARD NETWORK (Multi-layer FFNN): is an ANN with one 
input layer, one output layer, and one or more hidden layers of processing units. It does not 
present feed-back connections (e.g., a Multi-layer Perceptron or Shallow Networks if there 
are 2 hidden layers or Deep Learning increasing the complexity of architecture). 

• NET INPUT FUNCTION: it is the function used for considering the bias (in general, it is the 
product of a weight times the input, but other functions exist). 

• NEURON: is the crude approximations of biological neurons found in human brains and it is 
the base computational unit of ANN. It is sometime called NODE.  

• NODE: is another way to call a neuron.  
• OUTLIER: is a value significantly different from other observations of the database. 
• OUTPUT: in ANNs, the output represents the response of the neural network for each element 

of the input sample.  
• OVERFITTING: it happens when the model captures the noise along with the underlying 

pattern in data. In this case, the problem is that data are very noisy. 
• PERCEPTRON: is an algorithm for supervised learning of binary classifiers. It is a single-

layer neural network, so that the simplest architecture of Artificial Neural Network. 
• PRE-PROCESSING PHASE: represents all techniques adopted for analysing a dataset and 

providing good quality data to the model.  
• PRECISION: is the Positive Predicted Value (PPV) and it is calculated as the true positives 

divided by the sum of true positives and false positives. This index represents how many 
instances the model classifies correctly. 
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• PRINCIPAL COMPONENT ANALYSIS: is a statistical technique commonly used for 
identifying the features more crucial of a dataset. It is often used in a pre-processing phase 
for decreasing the size of the initial sample and the noise in the data.  

• RECALL: is the sensitivity. It represents the robustness of the model and it indicates how 
many instances are missing. 

• RECURRENT NETWORK: any network with at least one feed-back connection. It may, or 
may not, have hidden units. (e.g., a Simple Recurrent Network.). 

• REDOUT PHASE: in reservoir computing framework it is the feed-forward (i.e., the non-
recurring) part of the network.  

• RESERVOIR PHASE: in reservoir computing framework it is the recurring part of the 
network.  

• ROC: the Receiver Operating Characteristic is the graphical representation of the true positive 
rate (sensitivity) on the ordinate axis and false positive rate (1-specificity) on the abscissa 
one.  

• ROOT MEAN SQUARED ERROR (RMSE): is used for evaluating the performance of an 
algorithm and it is the root of the MSE.  

• SENSITIVITY: is measured as the true positives divided by the sum of true positives plus the 
false negatives. High value means that an element positive in the reality will never be 
classified as negative by the model. 

• SHALLOW NEURAL NETWORK: is a neural network with one or, at maximum, two 
hidden layers. 

• SINGLE-LAYER FEED-FORWARD NETWORK (Single-layer FFNN): is an ANN 
composed by one input layer and one output layer of processing units. No feed-back 
connections (e.g., a Single-Layer Perceptron). 

• SPECIFICITY: is calculated as true negatives divided by the sum of true negatives plus false 
positives. High value means that an element negative in the reality will never be classified as 
positive by the model. 

• STATIC NEURAL NETWORK: is a network where input dataset are not time-series. These 
ANNs are said “memoryless”.  

• STOCHASTIC GRADIENT DESCENT ALGORITHM: works as the gradient descent 
algorithm but weights’ updates are made subdividing randomly the input patterns of the 
training set. 

• SUM SQUARED ERROR (SSE): is a measure of the performance of an algorithm and it is 
calculated as the sum of the squared differences between targets and model outputs.  

• SUPPORT VECTOR MACHINE (SVM): are a Machine Learning methodology for 
classification and non-parametric regression based on kernel functions. 

• SYNAPSIS: in ANNs, it represents the connection between neurons of the neural network. 
• TARGET: in ANNs, the target is the true state of the elements presented to neural network in 

the training/validation phase. 
• TESTING SET: in ANNs, it is possible that algorithm considers not only a validation set but, 

in addition, another sample for measuring the generalization capability of neural network. In 
this case, the testing set is represented by 1/6 of the initial sample.  

• TRAINING SET: in ANNs, is the starting sample of data on which neural network is trained. 
In general, it is represented by the 2/3 of the whole input sample.  
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• TRANSFER FUNCTION: is another way to call the transfer function.  
• UNDERFITTING: a model is not able to capture the underlying pattern of the data. 
• VALIDATION SET: in ANNs, is the portion of initial sample that is used for validating the 

performance of neural network. In general, it is represented by 1/3 of the initial sample. If the 
algorithm considers also a testing set, the validation set is represented by the 50% of 1/3 (i.e., 
1/6).  

• VARIANCE: variability of model prediction for a given data point. 
• WEIGHT FUNCTION: in ANNs, it is the product of weights times input(s). 
• WEIGHT: in ANN, it represents the mathematical measure of synapsis between the layers of 

the neural network.  
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Abstract 

The aim of the present handbook is to drive the reader toward a deepen knowledge of Deep Learning (DL) 
methodologies and their functioning.  
Even if DL has ancient ancestry, only in recent years they have been strongly revalued and consequently 
applied. However, it is noteworthy that in this field, the increasing computational power played a 
fundamental role: Deep Learning models are techniques of success, but, at the same time, they are also 
expensive from a computational point of view and not always clearly understandable.  
The handbook starts considering the “big family” of Artificial Intelligence (AI), and continues clarifying what 
are Machine Learning (ML) and Deep Learning (DL). The reader will discover that DL is based on Artificial 
Neural Networks (ANN), then the fundamentals of ANNs will be presented and discussed, until getting to 
understand the working and the differences among different architectures.   
Finally, at the end of the reading, the reader will have in hands all knowledge required for recognizing 
different Deep Learning architectures, their functioning, and the fields of their applications.  
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