Evaluating incentives for investments to enhance occupational safety and health

An attempt to evaluate the ISI programme

Eva Dettmann, Elena Ragazzi and Lisa Sella

IWH Halle, CNR IRCrES Turin

Seminar September, 17th 2025

Structure of the presentation

- 1 The ISI programme
- Data and sample
- Research question and challenges
- Evaluation of ISI funding for RMS
- Summary and conclusion

General features of ISI

name of program	Support incentives for enterprises (ISI)
responsible institution aims	National Institute for Insurance against Accidents at Work (INAIL) reduction of work-related accidents and occupational diseases improvement of safety and health at work in general increase of awareness to occupational safety and health (OSH)
subject of funding type of support subsidy rate	investment projects, organisational interventions non-repayable grants yearly national calls (regional budget) 40% to 65% of investment costs
applicants application process	small and micro firms, self-employed; targeted primarily to high-risk sectors (e.g. transport, agriculture) standardized online application at "click day" assessment by INAIL and regional governments
payment/liqudation	after detailed check of the project and verification of the implementation

Source: https://osha.europa.eu/sites/default/files/Italy_EconomicInitiative.pdf

The ISI funding process

Risk management systems and the ISI programme

A Risk Management System (RMS) for occupational safety and health (OSH) is an "integrated set of organizational elements involved in a continuous cycle of planning, implementation, evaluation, and continual improvement, aimed at the abatement of occupational hazards in the workplace." (Robson et al. 2005)

RMS very heterogeneous measures/activities, can be

- mandatory
 - ⇒ implement laws, regulations
 - e.g. EU Directive 89/391/EEC (1989); "Framework Directive for OSH"
- voluntary
 - ⇒ (certified) guidelines, standards
 - e.g. health and safety instructions, risk assessment

ISI funding: consultancy and certification costs for voluntary RMS

Eligibility

- dependent on a score calculated in the application phase
- score defined by characteristics of the firm (size, sector) and the project (type of RMS, "quality")
- threshold defined by regional budget

Data sources and analysed sample

Data base = combination of information from different INAIL administrative sources

- ISI calls
 - ISI participants and their project proposals
- firm data
 - yearly information on all insured local units (organized by region)
- accident data
 - · records of all Italian occupational accidents (organized by region)
- \Rightarrow unbalanced panel for all firms applying for RMS funding in the 2012-2016 calls
 - = preselected firms with similar characteristics
 - units of observation: PATs (insurance positions)
 - = local firm units with job tasks of similar risk

Sample description

	sample	non-treated	treated	dropouts
median unit size	12.72	12.14	15.51	12.42
micro unit	43.12%	44.64%	35.27%	44.12%
small unit	39.94%	39.21%	45.59%	37.49%
primary sector	4.94%	4.79%	5.49%	5.04%
manufacturing	32.96%	32.64%	36.61%	30.59%
construction	22.82%	22.82%	23.63%	21.93%
tertiary sector	39.29%	39.74%	34.28%	42.44%
centre	22.45%	20.98%	24.38%	27.50%
island/south	28.48%	27.40%	27.12%	35.19%
northeast	25.57%	27.58%	25.21%	16.27%
northwest	23.50%	24.05%	23.29%	21.04%
former sev. accidents	30.62%	29.92%	34.19%	30.24%
mean no. not sev. accidents	0.78	0.74	0.86	0.88
mean index not sev. accidents	0.03	0.04	0.02	0.02
mean no. sev. accidents	0.32	0.30	0.36	0.36
mean index sev. accidents	0.01	0.01	0.01	0.01
number firm units	7,801	5,468	1,202	1,131
sample share	100.00%	70.09%	15.41%	14.50%
				Differenced CNR

Research question

Do subsidies to invest in risk management systems (RMS) help to prevent/reduce accidents/severe accidents?

Challenges for the analysis

- RMS heterogeneous, rather low-level interventions
 - ⇒ expected measurable effect rather small
 - ⇒ find an adequate index to measure the effect
 - ⇒ consider "quality ranking" according to INAIL score
 - sample attrition among selected firms after click day
 - ⇒ find adequate estimation approach
 - potential influence of economic / financial stability
 - ⇒ include balance sheet data
 - potentially different intentions for implementing RMS
 - ⇒ deadweight effects?
 - ⇒ include RMS certification data (ACCREDIA)

Analyzed outcomes

- ⇒ number of not severe accidents
- number of severe accidents
- ⇒ frequency index (non-severe accidents)

$$\mathit{fi}_{it} = \frac{(\mathit{ac}_{it} - \mathit{sac}_{it})}{\mathit{emp}_{it}} * 1000$$

⇒ severity index (severe accidents)

$$si_{it} = \frac{sac_{it}}{emp_{it}} * 1000$$

with acit - number of indemnified accidents

sacit - number of severe accidents

 emp_{it} - number of employees

... alternative measures ???

Question: can we ignore the dropouts?

First answer: YES!

Estimation approach: Difference-in-Differences

- approach justified by the experimental setting of click day
- comparison of treated (admitted & liquidated) and controls (not selected)
- verification of different approaches:
 - standard DID
 - combination of matching and Callaway/Sant'Anna (2021) approach
- results not robust
- ⇒ main takeaways
 - severe accidents before application is important for impact evaluation
 - experimental setting vanished due to sample attrition during verification phase
 - ⇒ drop-outs cannot be ignored

Revised answer: NO!

Estimation approach: Panel IV poisson regression

$$\mathbb{E}\left[Y_{it}|D_{it},x_{it},\alpha_{i}\right] = \exp\left(\beta_{1}D_{it} + x'_{it}\beta_{2} + \alpha_{i}\right)$$
$$D_{it} = e'_{it}\gamma_{1} + x'_{it}\gamma_{2} + \alpha_{i} + \nu_{it}$$

where Y_{it} - outcome of firm unit i at time t

 x_{it} - observed covariates for firm unit i at time t

 D_{it} - funding RMS implementation in firm i at time t

e_{it} - selection of firm unit i at time t for RMS funding

 α_i - individual heterogeneity

- ⇒ 2-step GMM estimation
- std.errors clustered at level of firm units

Results - full sample

	severe accidents		not severe accidents	
	index	number	index	number
funding	-0.318**	0.108	-0.894**	0.033
former sev. accidents	1.590***	2.369***	0.667***	1.915***
risk job tasks	0.006***	0.002*	0.009	0.001
primary sector ⁽¹⁾	0.321***	0.543***	0.067	0.434***
$manufacturing^{(1)}$	-0.029	-0.039	-0.218	0.101
construction ⁽¹⁾	0.378***	-0.204**	-0.200	-0.411***
northeast ⁽²⁾	0.173***	0.134**	0.172***	0.090
centre ⁽²⁾	0.125**	-0.144	0.192	-0.422***
island/south ⁽²⁾	0.425***	-0.067	-0.049	-0.622***
size	-0.003***	0.002***	-0.001***	0.002***
constant	-5.631***	-2.731***	-4.085***	-1.381***
observations	68,780	69,990	68,780	69,990
number firm units	7,786	7,801	7,786	7,801
(4)	(0)			

Notes: (1) reference: tertiary sector; (2) reference: northwest.

Robustness - omitted variables I

economic/financial stability

- "better" firms might . . .
 - · have better machinery, equipment
 - be more motivated to really succeed in reducing (severe) accidents
- "worse" firms might . . .
 - take more risky jobs
 - have older machinery & equipment
 - (in worst case) struggle to survive
- ⇒ inclusion of balance sheet data

Robustness - omitted variables: balance sheet data (bankruptcy predictor)

	severe accidents index number		not severe accidents index number	
funding	-0.241*	0.128	-0.626	0.124
former sev. accidents	1.375***	2.145***	0.712***	1.846***
risk job tasks	0.005**	0.002**	0.012**	0.001
primary sector ⁽¹⁾	0.267*	0.599***	0.019	0.444***
$manufacturing^{(1)}$	-0.096	-0.056	-0.224	0.058
construction ⁽¹⁾	0.208	-0.218**	-0.333	-0.447***
northeast ⁽²⁾	0.168***	0.130*	0.207***	0.094
centre ⁽²⁾	0.057	-0.175*	0.009	-0.386***
$island/south^{(2)}$	0.409***	-0.018	0.050	-0.567***
size	-0.003***	0.002***	-0.001***	0.002***
bad predictor	-0.046	-0.363***	1.592**	-0.381***
medium predictor	0.256	0.169	-0.105	0.093
constant	-5.480***	-2.535***	-4.327***	-1.355***
observations	44,860	45,582	44,860	45,582
number firm units	6,969	7,006	6,969	7,006

Notes: (1) reference: tertiary sector; (2) reference: northwest.

Robustness - omitted variables II

different objectives for RMS implementation:

- willing to reduce (severe) accidents vs.
- get funding for (renewal of) certification for public tender applications
 deadweight effects?
- ⇒ inclusion of ACCREDIA data (all Italian firms included in RMS certification systems)

... to be done

Summary of the study and further research

research question

Does RMS funding help to reduce incidence of (severe) accidents ?

different answers for different indicators:

severity index	yes
number of severe accidents	no
frequency index	(yes)
number of not severe accidents	no

- RMS comparably soft, flexible intervention for enhancing OSH
- influence of further characteristics on incidence of accidents (e.g., former sev. accidents, risk of job tasks, size of firm unit, region)

future research

- ⇒ further robustness checks
- ⇒ analysis of combination of RMS and other investments

Many thanks for your attention!

Comments and questions:

eva.dettmann@iwh-halle.de; elenamaria.ragazzi@cnr.it; lisa.sella@cnr.it

